Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts

[Display omitted] •Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2020-12, Vol.278, p.119314, Article 119314
Hauptverfasser: Huang, Xiaoming, Liu, Kaituo, Vrijburg, Wilbert L., Ouyang, Xianhong, Iulian Dugulan, A., Liu, Yingxin, Tiny Verhoeven, M.W.G.M., Kosinov, Nikolay A., Pidko, Evgeny A., Hensen, Emiel J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119314
container_title Applied catalysis. B, Environmental
container_volume 278
creator Huang, Xiaoming
Liu, Kaituo
Vrijburg, Wilbert L.
Ouyang, Xianhong
Iulian Dugulan, A.
Liu, Yingxin
Tiny Verhoeven, M.W.G.M.
Kosinov, Nikolay A.
Pidko, Evgeny A.
Hensen, Emiel J.M.
description [Display omitted] •Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface. Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.
doi_str_mv 10.1016/j.apcatb.2020.119314
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448939731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320307293</els_id><sourcerecordid>2448939731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKtv4CHgedt87HazF0GKWqFSkHoO0-xEsqybmqQLfS7fw2dyy3r2NDDz_2B-hNxyNuOML-bNDPYG0m4mmBhWvJI8PyMTrkqZSaXkOZmwSiwyKUt5Sa5ibBhjQgo1Ia-rYx38B3aQnO-ot7TF_tC6zhkKxtU0efrznfXQYvAtmOQ7pL7HQJ8we8P51m0EHbqhPcYUr8mFhTbizd-ckvenx-1yla03zy_Lh3VmpGIpK9WukEWhbAGCgeU257taYAVQgmJGSeSVKKytUZkCIReVYHy4L7AwAqGUU3I35u6D_zpgTLrxh9ANlVrkuapkVUo-qPJRZYKPMaDV--A-IRw1Z_oETjd6BKdP4PQIbrDdjzYcPugdBh2Nw85g7QKapGvv_g_4Be_deKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448939731</pqid></control><display><type>article</type><title>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Xiaoming ; Liu, Kaituo ; Vrijburg, Wilbert L. ; Ouyang, Xianhong ; Iulian Dugulan, A. ; Liu, Yingxin ; Tiny Verhoeven, M.W.G.M. ; Kosinov, Nikolay A. ; Pidko, Evgeny A. ; Hensen, Emiel J.M.</creator><creatorcontrib>Huang, Xiaoming ; Liu, Kaituo ; Vrijburg, Wilbert L. ; Ouyang, Xianhong ; Iulian Dugulan, A. ; Liu, Yingxin ; Tiny Verhoeven, M.W.G.M. ; Kosinov, Nikolay A. ; Pidko, Evgeny A. ; Hensen, Emiel J.M.</creatorcontrib><description>[Display omitted] •Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface. Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119314</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acids ; Bimetallic ; Bimetals ; Carbohydrates ; Catalysts ; Characterization ; Dehydration ; Fe-Re ; Hydrogenation ; Infrared spectroscopy ; Intermediates ; Iron ; Levulinic acid ; Low temperature ; Mossbauer spectroscopy ; Nanoparticles ; Noble metals ; Spectrum analysis ; Titanium dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2020-12, Vol.278, p.119314, Article 119314</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier BV Dec 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</citedby><cites>FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</cites><orcidid>0000-0003-0938-8390 ; 0000-0002-9754-2417 ; 0000-0001-9242-9901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2020.119314$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Kaituo</creatorcontrib><creatorcontrib>Vrijburg, Wilbert L.</creatorcontrib><creatorcontrib>Ouyang, Xianhong</creatorcontrib><creatorcontrib>Iulian Dugulan, A.</creatorcontrib><creatorcontrib>Liu, Yingxin</creatorcontrib><creatorcontrib>Tiny Verhoeven, M.W.G.M.</creatorcontrib><creatorcontrib>Kosinov, Nikolay A.</creatorcontrib><creatorcontrib>Pidko, Evgeny A.</creatorcontrib><creatorcontrib>Hensen, Emiel J.M.</creatorcontrib><title>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface. Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.</description><subject>Acids</subject><subject>Bimetallic</subject><subject>Bimetals</subject><subject>Carbohydrates</subject><subject>Catalysts</subject><subject>Characterization</subject><subject>Dehydration</subject><subject>Fe-Re</subject><subject>Hydrogenation</subject><subject>Infrared spectroscopy</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Levulinic acid</subject><subject>Low temperature</subject><subject>Mossbauer spectroscopy</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKtv4CHgedt87HazF0GKWqFSkHoO0-xEsqybmqQLfS7fw2dyy3r2NDDz_2B-hNxyNuOML-bNDPYG0m4mmBhWvJI8PyMTrkqZSaXkOZmwSiwyKUt5Sa5ibBhjQgo1Ia-rYx38B3aQnO-ot7TF_tC6zhkKxtU0efrznfXQYvAtmOQ7pL7HQJ8we8P51m0EHbqhPcYUr8mFhTbizd-ckvenx-1yla03zy_Lh3VmpGIpK9WukEWhbAGCgeU257taYAVQgmJGSeSVKKytUZkCIReVYHy4L7AwAqGUU3I35u6D_zpgTLrxh9ANlVrkuapkVUo-qPJRZYKPMaDV--A-IRw1Z_oETjd6BKdP4PQIbrDdjzYcPugdBh2Nw85g7QKapGvv_g_4Be_deKQ</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Huang, Xiaoming</creator><creator>Liu, Kaituo</creator><creator>Vrijburg, Wilbert L.</creator><creator>Ouyang, Xianhong</creator><creator>Iulian Dugulan, A.</creator><creator>Liu, Yingxin</creator><creator>Tiny Verhoeven, M.W.G.M.</creator><creator>Kosinov, Nikolay A.</creator><creator>Pidko, Evgeny A.</creator><creator>Hensen, Emiel J.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0938-8390</orcidid><orcidid>https://orcid.org/0000-0002-9754-2417</orcidid><orcidid>https://orcid.org/0000-0001-9242-9901</orcidid></search><sort><creationdate>20201205</creationdate><title>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</title><author>Huang, Xiaoming ; Liu, Kaituo ; Vrijburg, Wilbert L. ; Ouyang, Xianhong ; Iulian Dugulan, A. ; Liu, Yingxin ; Tiny Verhoeven, M.W.G.M. ; Kosinov, Nikolay A. ; Pidko, Evgeny A. ; Hensen, Emiel J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Bimetallic</topic><topic>Bimetals</topic><topic>Carbohydrates</topic><topic>Catalysts</topic><topic>Characterization</topic><topic>Dehydration</topic><topic>Fe-Re</topic><topic>Hydrogenation</topic><topic>Infrared spectroscopy</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Levulinic acid</topic><topic>Low temperature</topic><topic>Mossbauer spectroscopy</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Kaituo</creatorcontrib><creatorcontrib>Vrijburg, Wilbert L.</creatorcontrib><creatorcontrib>Ouyang, Xianhong</creatorcontrib><creatorcontrib>Iulian Dugulan, A.</creatorcontrib><creatorcontrib>Liu, Yingxin</creatorcontrib><creatorcontrib>Tiny Verhoeven, M.W.G.M.</creatorcontrib><creatorcontrib>Kosinov, Nikolay A.</creatorcontrib><creatorcontrib>Pidko, Evgeny A.</creatorcontrib><creatorcontrib>Hensen, Emiel J.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaoming</au><au>Liu, Kaituo</au><au>Vrijburg, Wilbert L.</au><au>Ouyang, Xianhong</au><au>Iulian Dugulan, A.</au><au>Liu, Yingxin</au><au>Tiny Verhoeven, M.W.G.M.</au><au>Kosinov, Nikolay A.</au><au>Pidko, Evgeny A.</au><au>Hensen, Emiel J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-12-05</date><risdate>2020</risdate><volume>278</volume><spage>119314</spage><pages>119314-</pages><artnum>119314</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface. Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119314</doi><orcidid>https://orcid.org/0000-0003-0938-8390</orcidid><orcidid>https://orcid.org/0000-0002-9754-2417</orcidid><orcidid>https://orcid.org/0000-0001-9242-9901</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2020-12, Vol.278, p.119314, Article 119314
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2448939731
source Access via ScienceDirect (Elsevier)
subjects Acids
Bimetallic
Bimetals
Carbohydrates
Catalysts
Characterization
Dehydration
Fe-Re
Hydrogenation
Infrared spectroscopy
Intermediates
Iron
Levulinic acid
Low temperature
Mossbauer spectroscopy
Nanoparticles
Noble metals
Spectrum analysis
Titanium dioxide
title Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenation%20of%20levulinic%20acid%20to%20%CE%B3-valerolactone%20over%20Fe-Re/TiO2%20catalysts&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Huang,%20Xiaoming&rft.date=2020-12-05&rft.volume=278&rft.spage=119314&rft.pages=119314-&rft.artnum=119314&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119314&rft_dat=%3Cproquest_cross%3E2448939731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448939731&rft_id=info:pmid/&rft_els_id=S0926337320307293&rfr_iscdi=true