Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts
[Display omitted] •Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction d...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2020-12, Vol.278, p.119314, Article 119314 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 119314 |
container_title | Applied catalysis. B, Environmental |
container_volume | 278 |
creator | Huang, Xiaoming Liu, Kaituo Vrijburg, Wilbert L. Ouyang, Xianhong Iulian Dugulan, A. Liu, Yingxin Tiny Verhoeven, M.W.G.M. Kosinov, Nikolay A. Pidko, Evgeny A. Hensen, Emiel J.M. |
description | [Display omitted]
•Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface.
Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar. |
doi_str_mv | 10.1016/j.apcatb.2020.119314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448939731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337320307293</els_id><sourcerecordid>2448939731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</originalsourceid><addsrcrecordid>eNp9kM1KAzEQx4MoWKtv4CHgedt87HazF0GKWqFSkHoO0-xEsqybmqQLfS7fw2dyy3r2NDDz_2B-hNxyNuOML-bNDPYG0m4mmBhWvJI8PyMTrkqZSaXkOZmwSiwyKUt5Sa5ibBhjQgo1Ia-rYx38B3aQnO-ot7TF_tC6zhkKxtU0efrznfXQYvAtmOQ7pL7HQJ8we8P51m0EHbqhPcYUr8mFhTbizd-ckvenx-1yla03zy_Lh3VmpGIpK9WukEWhbAGCgeU257taYAVQgmJGSeSVKKytUZkCIReVYHy4L7AwAqGUU3I35u6D_zpgTLrxh9ANlVrkuapkVUo-qPJRZYKPMaDV--A-IRw1Z_oETjd6BKdP4PQIbrDdjzYcPugdBh2Nw85g7QKapGvv_g_4Be_deKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448939731</pqid></control><display><type>article</type><title>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</title><source>Access via ScienceDirect (Elsevier)</source><creator>Huang, Xiaoming ; Liu, Kaituo ; Vrijburg, Wilbert L. ; Ouyang, Xianhong ; Iulian Dugulan, A. ; Liu, Yingxin ; Tiny Verhoeven, M.W.G.M. ; Kosinov, Nikolay A. ; Pidko, Evgeny A. ; Hensen, Emiel J.M.</creator><creatorcontrib>Huang, Xiaoming ; Liu, Kaituo ; Vrijburg, Wilbert L. ; Ouyang, Xianhong ; Iulian Dugulan, A. ; Liu, Yingxin ; Tiny Verhoeven, M.W.G.M. ; Kosinov, Nikolay A. ; Pidko, Evgeny A. ; Hensen, Emiel J.M.</creatorcontrib><description>[Display omitted]
•Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface.
Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119314</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acids ; Bimetallic ; Bimetals ; Carbohydrates ; Catalysts ; Characterization ; Dehydration ; Fe-Re ; Hydrogenation ; Infrared spectroscopy ; Intermediates ; Iron ; Levulinic acid ; Low temperature ; Mossbauer spectroscopy ; Nanoparticles ; Noble metals ; Spectrum analysis ; Titanium dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2020-12, Vol.278, p.119314, Article 119314</ispartof><rights>2020 The Author(s)</rights><rights>Copyright Elsevier BV Dec 5, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</citedby><cites>FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</cites><orcidid>0000-0003-0938-8390 ; 0000-0002-9754-2417 ; 0000-0001-9242-9901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apcatb.2020.119314$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Kaituo</creatorcontrib><creatorcontrib>Vrijburg, Wilbert L.</creatorcontrib><creatorcontrib>Ouyang, Xianhong</creatorcontrib><creatorcontrib>Iulian Dugulan, A.</creatorcontrib><creatorcontrib>Liu, Yingxin</creatorcontrib><creatorcontrib>Tiny Verhoeven, M.W.G.M.</creatorcontrib><creatorcontrib>Kosinov, Nikolay A.</creatorcontrib><creatorcontrib>Pidko, Evgeny A.</creatorcontrib><creatorcontrib>Hensen, Emiel J.M.</creatorcontrib><title>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted]
•Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface.
Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.</description><subject>Acids</subject><subject>Bimetallic</subject><subject>Bimetals</subject><subject>Carbohydrates</subject><subject>Catalysts</subject><subject>Characterization</subject><subject>Dehydration</subject><subject>Fe-Re</subject><subject>Hydrogenation</subject><subject>Infrared spectroscopy</subject><subject>Intermediates</subject><subject>Iron</subject><subject>Levulinic acid</subject><subject>Low temperature</subject><subject>Mossbauer spectroscopy</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>Spectrum analysis</subject><subject>Titanium dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQx4MoWKtv4CHgedt87HazF0GKWqFSkHoO0-xEsqybmqQLfS7fw2dyy3r2NDDz_2B-hNxyNuOML-bNDPYG0m4mmBhWvJI8PyMTrkqZSaXkOZmwSiwyKUt5Sa5ibBhjQgo1Ia-rYx38B3aQnO-ot7TF_tC6zhkKxtU0efrznfXQYvAtmOQ7pL7HQJ8we8P51m0EHbqhPcYUr8mFhTbizd-ckvenx-1yla03zy_Lh3VmpGIpK9WukEWhbAGCgeU257taYAVQgmJGSeSVKKytUZkCIReVYHy4L7AwAqGUU3I35u6D_zpgTLrxh9ANlVrkuapkVUo-qPJRZYKPMaDV--A-IRw1Z_oETjd6BKdP4PQIbrDdjzYcPugdBh2Nw85g7QKapGvv_g_4Be_deKQ</recordid><startdate>20201205</startdate><enddate>20201205</enddate><creator>Huang, Xiaoming</creator><creator>Liu, Kaituo</creator><creator>Vrijburg, Wilbert L.</creator><creator>Ouyang, Xianhong</creator><creator>Iulian Dugulan, A.</creator><creator>Liu, Yingxin</creator><creator>Tiny Verhoeven, M.W.G.M.</creator><creator>Kosinov, Nikolay A.</creator><creator>Pidko, Evgeny A.</creator><creator>Hensen, Emiel J.M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0938-8390</orcidid><orcidid>https://orcid.org/0000-0002-9754-2417</orcidid><orcidid>https://orcid.org/0000-0001-9242-9901</orcidid></search><sort><creationdate>20201205</creationdate><title>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</title><author>Huang, Xiaoming ; Liu, Kaituo ; Vrijburg, Wilbert L. ; Ouyang, Xianhong ; Iulian Dugulan, A. ; Liu, Yingxin ; Tiny Verhoeven, M.W.G.M. ; Kosinov, Nikolay A. ; Pidko, Evgeny A. ; Hensen, Emiel J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-78b53558f5a20af1f41bd2e9aa7a80c83e1925ffde8c5ea4292012e96e5c2ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Bimetallic</topic><topic>Bimetals</topic><topic>Carbohydrates</topic><topic>Catalysts</topic><topic>Characterization</topic><topic>Dehydration</topic><topic>Fe-Re</topic><topic>Hydrogenation</topic><topic>Infrared spectroscopy</topic><topic>Intermediates</topic><topic>Iron</topic><topic>Levulinic acid</topic><topic>Low temperature</topic><topic>Mossbauer spectroscopy</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>Spectrum analysis</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Xiaoming</creatorcontrib><creatorcontrib>Liu, Kaituo</creatorcontrib><creatorcontrib>Vrijburg, Wilbert L.</creatorcontrib><creatorcontrib>Ouyang, Xianhong</creatorcontrib><creatorcontrib>Iulian Dugulan, A.</creatorcontrib><creatorcontrib>Liu, Yingxin</creatorcontrib><creatorcontrib>Tiny Verhoeven, M.W.G.M.</creatorcontrib><creatorcontrib>Kosinov, Nikolay A.</creatorcontrib><creatorcontrib>Pidko, Evgeny A.</creatorcontrib><creatorcontrib>Hensen, Emiel J.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Xiaoming</au><au>Liu, Kaituo</au><au>Vrijburg, Wilbert L.</au><au>Ouyang, Xianhong</au><au>Iulian Dugulan, A.</au><au>Liu, Yingxin</au><au>Tiny Verhoeven, M.W.G.M.</au><au>Kosinov, Nikolay A.</au><au>Pidko, Evgeny A.</au><au>Hensen, Emiel J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-12-05</date><risdate>2020</risdate><volume>278</volume><spage>119314</spage><pages>119314-</pages><artnum>119314</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted]
•Selective hydrogenation of levulinic acid to γ-GVL over Fe-Re/TiO2.•Strong synergy between Fe and Re observed.•Nearly full conversion with 95 % yield of γ-valerolactone under mild conditions.•Formation of Fe-Re alloy and Re nanoparticles covered with FeOx.•Increased Re reduction degree and acid sites formed on catalyst surface.
Hydrogenation of levulinic acid to γ-valerolactone is a key reaction in the valorization of carbohydrates to renewable fuels and chemicals. State-of-the-art catalysts are based on supported noble metal nanoparticle catalysts. We report the utility of a bimetallic Fe-Re supported on TiO2 for this reaction. A strong synergy was observed between Fe and Re for the hydrogenation of levulinic acid in water under mild conditions. Fe-Re/TiO2 shows superior catalytic performance compared to monometallic Fe and Re catalysts at similar metal content. The hydrogenation activity of the bimetallic catalysts increased with Re content. H2-TPR, XPS, XANES, EXAFS, Mössbauer spectroscopy, TEM, and low-temperature CO IR spectroscopy show that the bimetallic catalysts contain metallic Re nanoparticles covered by FeOx species and small amounts of a Fe-Re alloy. Under reaction conditions, the partially reduced surface FeOx species adsorb water and form Brønsted acidic OH groups, which are involved in dehydration of reaction intermediates. Under optimized conditions, nearly full conversion of levulinic acid with a 95 % yield of γ-valerolactone could be achieved at a temperature as low as 180 °C in water at a H2 pressure of 40 bar.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119314</doi><orcidid>https://orcid.org/0000-0003-0938-8390</orcidid><orcidid>https://orcid.org/0000-0002-9754-2417</orcidid><orcidid>https://orcid.org/0000-0001-9242-9901</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-12, Vol.278, p.119314, Article 119314 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2448939731 |
source | Access via ScienceDirect (Elsevier) |
subjects | Acids Bimetallic Bimetals Carbohydrates Catalysts Characterization Dehydration Fe-Re Hydrogenation Infrared spectroscopy Intermediates Iron Levulinic acid Low temperature Mossbauer spectroscopy Nanoparticles Noble metals Spectrum analysis Titanium dioxide |
title | Hydrogenation of levulinic acid to γ-valerolactone over Fe-Re/TiO2 catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T18%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogenation%20of%20levulinic%20acid%20to%20%CE%B3-valerolactone%20over%20Fe-Re/TiO2%20catalysts&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Huang,%20Xiaoming&rft.date=2020-12-05&rft.volume=278&rft.spage=119314&rft.pages=119314-&rft.artnum=119314&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119314&rft_dat=%3Cproquest_cross%3E2448939731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448939731&rft_id=info:pmid/&rft_els_id=S0926337320307293&rfr_iscdi=true |