Strategic equivalence among hat puzzles of various protocols with many colors
We discuss puzzles of prisoners and hats with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.
Gespeichert in:
Veröffentlicht in: | Mathematical logic quarterly 2020-10, Vol.66 (3), p.295-299 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 3 |
container_start_page | 295 |
container_title | Mathematical logic quarterly |
container_volume | 66 |
creator | Kada, Masaru Shizuma, Souji |
description | We discuss puzzles of prisoners and hats
with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners. |
doi_str_mv | 10.1002/malq.201900069 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448811019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448811019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-2c1935c0769552ebcf7276ea209fe6727d581e14b84a61f408ba428daf9574fa3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYhePTfxvNiWfh4JUTGBGKOem1JaWLK7hXYXAr_eEowePc1M8rwzkweAe4wGGCHyWJtqOyAIK4QQVxeghxnBxVAKdAl6SFFSMI75NbhJaZ0RhgXqgdlHG03rlqWFbtuVO1O5xjpo6tAs4cq0cNMdj5VLMHi4M7EMXYKbGNpgQ5XgvmxXsDbNAeYxxHQLrrypkrv7qX3w9fz0OZ4U07eX1_FoWlgiiCqIxWrILBJcMUbc3HpBBHeGIOUdz_2CSewwnUtqOPYUybmhRC6MV0xQb4Z98HDem1_Zdi61eh262OSTmlAqJcZZQ6YGZ8rGkFJ0Xm9iWZt40BjpkzJ9UqZ_leWAOgf2ZeUO_9B6Npq-_2W_AYwBcGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448811019</pqid></control><display><type>article</type><title>Strategic equivalence among hat puzzles of various protocols with many colors</title><source>Wiley Journals</source><creator>Kada, Masaru ; Shizuma, Souji</creator><creatorcontrib>Kada, Masaru ; Shizuma, Souji</creatorcontrib><description>We discuss puzzles of prisoners and hats
with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.</description><identifier>ISSN: 0942-5616</identifier><identifier>EISSN: 1521-3870</identifier><identifier>DOI: 10.1002/malq.201900069</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Equivalence ; Prisoners</subject><ispartof>Mathematical logic quarterly, 2020-10, Vol.66 (3), p.295-299</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2729-2c1935c0769552ebcf7276ea209fe6727d581e14b84a61f408ba428daf9574fa3</cites><orcidid>0000-0002-7543-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmalq.201900069$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmalq.201900069$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kada, Masaru</creatorcontrib><creatorcontrib>Shizuma, Souji</creatorcontrib><title>Strategic equivalence among hat puzzles of various protocols with many colors</title><title>Mathematical logic quarterly</title><description>We discuss puzzles of prisoners and hats
with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.</description><subject>Equivalence</subject><subject>Prisoners</subject><issn>0942-5616</issn><issn>1521-3870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYhePTfxvNiWfh4JUTGBGKOem1JaWLK7hXYXAr_eEowePc1M8rwzkweAe4wGGCHyWJtqOyAIK4QQVxeghxnBxVAKdAl6SFFSMI75NbhJaZ0RhgXqgdlHG03rlqWFbtuVO1O5xjpo6tAs4cq0cNMdj5VLMHi4M7EMXYKbGNpgQ5XgvmxXsDbNAeYxxHQLrrypkrv7qX3w9fz0OZ4U07eX1_FoWlgiiCqIxWrILBJcMUbc3HpBBHeGIOUdz_2CSewwnUtqOPYUybmhRC6MV0xQb4Z98HDem1_Zdi61eh262OSTmlAqJcZZQ6YGZ8rGkFJ0Xm9iWZt40BjpkzJ9UqZ_leWAOgf2ZeUO_9B6Npq-_2W_AYwBcGI</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Kada, Masaru</creator><creator>Shizuma, Souji</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7543-6154</orcidid></search><sort><creationdate>202010</creationdate><title>Strategic equivalence among hat puzzles of various protocols with many colors</title><author>Kada, Masaru ; Shizuma, Souji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-2c1935c0769552ebcf7276ea209fe6727d581e14b84a61f408ba428daf9574fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Equivalence</topic><topic>Prisoners</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kada, Masaru</creatorcontrib><creatorcontrib>Shizuma, Souji</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical logic quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kada, Masaru</au><au>Shizuma, Souji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategic equivalence among hat puzzles of various protocols with many colors</atitle><jtitle>Mathematical logic quarterly</jtitle><date>2020-10</date><risdate>2020</risdate><volume>66</volume><issue>3</issue><spage>295</spage><epage>299</epage><pages>295-299</pages><issn>0942-5616</issn><eissn>1521-3870</eissn><abstract>We discuss puzzles of prisoners and hats
with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/malq.201900069</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7543-6154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-5616 |
ispartof | Mathematical logic quarterly, 2020-10, Vol.66 (3), p.295-299 |
issn | 0942-5616 1521-3870 |
language | eng |
recordid | cdi_proquest_journals_2448811019 |
source | Wiley Journals |
subjects | Equivalence Prisoners |
title | Strategic equivalence among hat puzzles of various protocols with many colors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategic%20equivalence%20among%20hat%20puzzles%20of%20various%20protocols%20with%20many%20colors&rft.jtitle=Mathematical%20logic%20quarterly&rft.au=Kada,%20Masaru&rft.date=2020-10&rft.volume=66&rft.issue=3&rft.spage=295&rft.epage=299&rft.pages=295-299&rft.issn=0942-5616&rft.eissn=1521-3870&rft_id=info:doi/10.1002/malq.201900069&rft_dat=%3Cproquest_cross%3E2448811019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448811019&rft_id=info:pmid/&rfr_iscdi=true |