Strategic equivalence among hat puzzles of various protocols with many colors

We discuss puzzles of prisoners and hats with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical logic quarterly 2020-10, Vol.66 (3), p.295-299
Hauptverfasser: Kada, Masaru, Shizuma, Souji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 3
container_start_page 295
container_title Mathematical logic quarterly
container_volume 66
creator Kada, Masaru
Shizuma, Souji
description We discuss puzzles of prisoners and hats with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.
doi_str_mv 10.1002/malq.201900069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448811019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448811019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2729-2c1935c0769552ebcf7276ea209fe6727d581e14b84a61f408ba428daf9574fa3</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYhePTfxvNiWfh4JUTGBGKOem1JaWLK7hXYXAr_eEowePc1M8rwzkweAe4wGGCHyWJtqOyAIK4QQVxeghxnBxVAKdAl6SFFSMI75NbhJaZ0RhgXqgdlHG03rlqWFbtuVO1O5xjpo6tAs4cq0cNMdj5VLMHi4M7EMXYKbGNpgQ5XgvmxXsDbNAeYxxHQLrrypkrv7qX3w9fz0OZ4U07eX1_FoWlgiiCqIxWrILBJcMUbc3HpBBHeGIOUdz_2CSewwnUtqOPYUybmhRC6MV0xQb4Z98HDem1_Zdi61eh262OSTmlAqJcZZQ6YGZ8rGkFJ0Xm9iWZt40BjpkzJ9UqZ_leWAOgf2ZeUO_9B6Npq-_2W_AYwBcGI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448811019</pqid></control><display><type>article</type><title>Strategic equivalence among hat puzzles of various protocols with many colors</title><source>Wiley Journals</source><creator>Kada, Masaru ; Shizuma, Souji</creator><creatorcontrib>Kada, Masaru ; Shizuma, Souji</creatorcontrib><description>We discuss puzzles of prisoners and hats with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.</description><identifier>ISSN: 0942-5616</identifier><identifier>EISSN: 1521-3870</identifier><identifier>DOI: 10.1002/malq.201900069</identifier><language>eng</language><publisher>Berlin: Wiley Subscription Services, Inc</publisher><subject>Equivalence ; Prisoners</subject><ispartof>Mathematical logic quarterly, 2020-10, Vol.66 (3), p.295-299</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2729-2c1935c0769552ebcf7276ea209fe6727d581e14b84a61f408ba428daf9574fa3</cites><orcidid>0000-0002-7543-6154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmalq.201900069$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmalq.201900069$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kada, Masaru</creatorcontrib><creatorcontrib>Shizuma, Souji</creatorcontrib><title>Strategic equivalence among hat puzzles of various protocols with many colors</title><title>Mathematical logic quarterly</title><description>We discuss puzzles of prisoners and hats with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.</description><subject>Equivalence</subject><subject>Prisoners</subject><issn>0942-5616</issn><issn>1521-3870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PAjEQhhujiYhePTfxvNiWfh4JUTGBGKOem1JaWLK7hXYXAr_eEowePc1M8rwzkweAe4wGGCHyWJtqOyAIK4QQVxeghxnBxVAKdAl6SFFSMI75NbhJaZ0RhgXqgdlHG03rlqWFbtuVO1O5xjpo6tAs4cq0cNMdj5VLMHi4M7EMXYKbGNpgQ5XgvmxXsDbNAeYxxHQLrrypkrv7qX3w9fz0OZ4U07eX1_FoWlgiiCqIxWrILBJcMUbc3HpBBHeGIOUdz_2CSewwnUtqOPYUybmhRC6MV0xQb4Z98HDem1_Zdi61eh262OSTmlAqJcZZQ6YGZ8rGkFJ0Xm9iWZt40BjpkzJ9UqZ_leWAOgf2ZeUO_9B6Npq-_2W_AYwBcGI</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Kada, Masaru</creator><creator>Shizuma, Souji</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7543-6154</orcidid></search><sort><creationdate>202010</creationdate><title>Strategic equivalence among hat puzzles of various protocols with many colors</title><author>Kada, Masaru ; Shizuma, Souji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2729-2c1935c0769552ebcf7276ea209fe6727d581e14b84a61f408ba428daf9574fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Equivalence</topic><topic>Prisoners</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kada, Masaru</creatorcontrib><creatorcontrib>Shizuma, Souji</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical logic quarterly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kada, Masaru</au><au>Shizuma, Souji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strategic equivalence among hat puzzles of various protocols with many colors</atitle><jtitle>Mathematical logic quarterly</jtitle><date>2020-10</date><risdate>2020</risdate><volume>66</volume><issue>3</issue><spage>295</spage><epage>299</epage><pages>295-299</pages><issn>0942-5616</issn><eissn>1521-3870</eissn><abstract>We discuss puzzles of prisoners and hats with infinitely many prisoners and more than two hat colors. Assuming that the set of hat colors is equipped with a commutative group structure, we prove strategic equivalence among puzzles of several protocols with countably many prisoners.</abstract><cop>Berlin</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/malq.201900069</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7543-6154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0942-5616
ispartof Mathematical logic quarterly, 2020-10, Vol.66 (3), p.295-299
issn 0942-5616
1521-3870
language eng
recordid cdi_proquest_journals_2448811019
source Wiley Journals
subjects Equivalence
Prisoners
title Strategic equivalence among hat puzzles of various protocols with many colors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A27%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strategic%20equivalence%20among%20hat%20puzzles%20of%20various%20protocols%20with%20many%20colors&rft.jtitle=Mathematical%20logic%20quarterly&rft.au=Kada,%20Masaru&rft.date=2020-10&rft.volume=66&rft.issue=3&rft.spage=295&rft.epage=299&rft.pages=295-299&rft.issn=0942-5616&rft.eissn=1521-3870&rft_id=info:doi/10.1002/malq.201900069&rft_dat=%3Cproquest_cross%3E2448811019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448811019&rft_id=info:pmid/&rfr_iscdi=true