Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model

Surface-enhanced Raman scattering (SERS) is a supersensitive technique for monitoring catalytic reactions. However, building a SERS-kinetics model to investigate catalytic efficiency on the surface or interface of the catalyst remains a great challenge. In the present study, we successfully obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-09, Vol.92 (17), p.11763-11770
Hauptverfasser: Wen, Sisi, Ma, Xiaowei, Liu, Hao, Chen, Gang, Wang, He, Deng, Gaoqiang, Zhang, Yuantao, Song, Wei, Zhao, Bing, Ozaki, Yukihiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11770
container_issue 17
container_start_page 11763
container_title Analytical chemistry (Washington)
container_volume 92
creator Wen, Sisi
Ma, Xiaowei
Liu, Hao
Chen, Gang
Wang, He
Deng, Gaoqiang
Zhang, Yuantao
Song, Wei
Zhao, Bing
Ozaki, Yukihiro
description Surface-enhanced Raman scattering (SERS) is a supersensitive technique for monitoring catalytic reactions. However, building a SERS-kinetics model to investigate catalytic efficiency on the surface or interface of the catalyst remains a great challenge. In the present study, we successfully obtained an excellent semiconducting SERS substrate, reduced MnCo2O4 (R-MnCo2O4) nanotubes, whose favorable SERS sensitivity is mainly related to the promoted interfacial charge transfer caused by the introduction of oxygen vacancies as well as the electromagnetic enhancement effect. Furthermore, the R-MnCo2O4 nanotubes showed a favorable oxidase-like activity toward oxidation with the aid of molecular oxygen. It was also showed the oxidase-like catalytic process could be monitored using the SERS technique. A new SERS-kinetics model to monitor the catalytic efficiency of the oxidase-like reaction was developed, and the results demonstrate that the V m values measured by the SERS-kinetics method are close to that obtained by the UV–vis approach, while the K m values measured by the SERS-kinetics method are much lower, demonstrating the better affinity between the enzyme and the substrate from SERS results and further confirming the high sensitivity of the SERS-kinetics approach and the actual enzyme-like reaction on the surface of nanozymes, which provides guidance in understanding the kinetics process and catalytic mechanism of natural enzymatic and other artificial enzymatic reactions. This work demonstrated the improved SERS sensitivity of defective semiconductors for the application of enzyme mimicking, providing a new frontier to construct highly sensitive biosensors.
doi_str_mv 10.1021/acs.analchem.0c01886
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448687515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448687515</sourcerecordid><originalsourceid>FETCH-LOGICAL-a442t-b9299386cc4b37c4f019836af3b5539f402cecaa31ce05984c8ea9df3a8c68b63</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpaTZp_0Epgp69HX1Ylo9hyRfdNCFNejXjsdR18Ecq2YfNr4_C7uaYywwMz_sOPIx9E7AUIMVPpLjEATvauH4JBMJa84EtRC4hM9bKj2wBACqTBcARO47xEUAIEOYzO1LSlAUUxYLNp0RzwMnx63FopzG0wz9-2-Hkx9DzNPi0cfzPHDyS4yucsNvGNvLR8984jM_b3vG_2LVNqmh4vT2g2dmwwYHS7Q57HLJf7eCmlmJ607juC_vksYvu636fsIfzs_vVZba-ubhana4z1FpOWV3KslTWEOlaFaQ9iNIqg17Vea5Kr0GSI0QlyEFeWk3WYdl4hZaMrY06YT92vU9h_D-7OFWP4xyStFhJra2xRS7yROkdRWGMMThfPYW2x7CtBFSvrqvkujq4rvauU-z7vnyue9e8hQ5yEwA74DX-9vjdzhcVB48a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448687515</pqid></control><display><type>article</type><title>Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model</title><source>MEDLINE</source><source>ACS Publications</source><creator>Wen, Sisi ; Ma, Xiaowei ; Liu, Hao ; Chen, Gang ; Wang, He ; Deng, Gaoqiang ; Zhang, Yuantao ; Song, Wei ; Zhao, Bing ; Ozaki, Yukihiro</creator><creatorcontrib>Wen, Sisi ; Ma, Xiaowei ; Liu, Hao ; Chen, Gang ; Wang, He ; Deng, Gaoqiang ; Zhang, Yuantao ; Song, Wei ; Zhao, Bing ; Ozaki, Yukihiro</creatorcontrib><description>Surface-enhanced Raman scattering (SERS) is a supersensitive technique for monitoring catalytic reactions. However, building a SERS-kinetics model to investigate catalytic efficiency on the surface or interface of the catalyst remains a great challenge. In the present study, we successfully obtained an excellent semiconducting SERS substrate, reduced MnCo2O4 (R-MnCo2O4) nanotubes, whose favorable SERS sensitivity is mainly related to the promoted interfacial charge transfer caused by the introduction of oxygen vacancies as well as the electromagnetic enhancement effect. Furthermore, the R-MnCo2O4 nanotubes showed a favorable oxidase-like activity toward oxidation with the aid of molecular oxygen. It was also showed the oxidase-like catalytic process could be monitored using the SERS technique. A new SERS-kinetics model to monitor the catalytic efficiency of the oxidase-like reaction was developed, and the results demonstrate that the V m values measured by the SERS-kinetics method are close to that obtained by the UV–vis approach, while the K m values measured by the SERS-kinetics method are much lower, demonstrating the better affinity between the enzyme and the substrate from SERS results and further confirming the high sensitivity of the SERS-kinetics approach and the actual enzyme-like reaction on the surface of nanozymes, which provides guidance in understanding the kinetics process and catalytic mechanism of natural enzymatic and other artificial enzymatic reactions. This work demonstrated the improved SERS sensitivity of defective semiconductors for the application of enzyme mimicking, providing a new frontier to construct highly sensitive biosensors.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c01886</identifier><identifier>PMID: 32697077</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Analytical chemistry ; Biosensing Techniques - methods ; Biosensors ; Catalysis ; Catalysts ; Charge transfer ; Chemistry ; Electronics industry ; Enzymes ; Humans ; Kinetics ; Metal Nanoparticles - chemistry ; Mimicry ; Monitoring ; Nanotechnology ; Nanotubes ; Oxidase ; Oxidation ; Oxygen ; Raman spectra ; Reaction kinetics ; Sensitivity ; Spectrum Analysis, Raman - methods ; Substrates</subject><ispartof>Analytical chemistry (Washington), 2020-09, Vol.92 (17), p.11763-11770</ispartof><rights>Copyright American Chemical Society Sep 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a442t-b9299386cc4b37c4f019836af3b5539f402cecaa31ce05984c8ea9df3a8c68b63</citedby><cites>FETCH-LOGICAL-a442t-b9299386cc4b37c4f019836af3b5539f402cecaa31ce05984c8ea9df3a8c68b63</cites><orcidid>0000-0002-4479-4004 ; 0000-0002-8671-6979 ; 0000-0002-0044-9743 ; 0000-0001-9814-419X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c01886$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c01886$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32697077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wen, Sisi</creatorcontrib><creatorcontrib>Ma, Xiaowei</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Deng, Gaoqiang</creatorcontrib><creatorcontrib>Zhang, Yuantao</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Ozaki, Yukihiro</creatorcontrib><title>Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Surface-enhanced Raman scattering (SERS) is a supersensitive technique for monitoring catalytic reactions. However, building a SERS-kinetics model to investigate catalytic efficiency on the surface or interface of the catalyst remains a great challenge. In the present study, we successfully obtained an excellent semiconducting SERS substrate, reduced MnCo2O4 (R-MnCo2O4) nanotubes, whose favorable SERS sensitivity is mainly related to the promoted interfacial charge transfer caused by the introduction of oxygen vacancies as well as the electromagnetic enhancement effect. Furthermore, the R-MnCo2O4 nanotubes showed a favorable oxidase-like activity toward oxidation with the aid of molecular oxygen. It was also showed the oxidase-like catalytic process could be monitored using the SERS technique. A new SERS-kinetics model to monitor the catalytic efficiency of the oxidase-like reaction was developed, and the results demonstrate that the V m values measured by the SERS-kinetics method are close to that obtained by the UV–vis approach, while the K m values measured by the SERS-kinetics method are much lower, demonstrating the better affinity between the enzyme and the substrate from SERS results and further confirming the high sensitivity of the SERS-kinetics approach and the actual enzyme-like reaction on the surface of nanozymes, which provides guidance in understanding the kinetics process and catalytic mechanism of natural enzymatic and other artificial enzymatic reactions. This work demonstrated the improved SERS sensitivity of defective semiconductors for the application of enzyme mimicking, providing a new frontier to construct highly sensitive biosensors.</description><subject>Analytical chemistry</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Electronics industry</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Mimicry</subject><subject>Monitoring</subject><subject>Nanotechnology</subject><subject>Nanotubes</subject><subject>Oxidase</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Raman spectra</subject><subject>Reaction kinetics</subject><subject>Sensitivity</subject><subject>Spectrum Analysis, Raman - methods</subject><subject>Substrates</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVpaTZp_0Epgp69HX1Ylo9hyRfdNCFNejXjsdR18Ecq2YfNr4_C7uaYywwMz_sOPIx9E7AUIMVPpLjEATvauH4JBMJa84EtRC4hM9bKj2wBACqTBcARO47xEUAIEOYzO1LSlAUUxYLNp0RzwMnx63FopzG0wz9-2-Hkx9DzNPi0cfzPHDyS4yucsNvGNvLR8984jM_b3vG_2LVNqmh4vT2g2dmwwYHS7Q57HLJf7eCmlmJ607juC_vksYvu636fsIfzs_vVZba-ubhana4z1FpOWV3KslTWEOlaFaQ9iNIqg17Vea5Kr0GSI0QlyEFeWk3WYdl4hZaMrY06YT92vU9h_D-7OFWP4xyStFhJra2xRS7yROkdRWGMMThfPYW2x7CtBFSvrqvkujq4rvauU-z7vnyue9e8hQ5yEwA74DX-9vjdzhcVB48a</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Wen, Sisi</creator><creator>Ma, Xiaowei</creator><creator>Liu, Hao</creator><creator>Chen, Gang</creator><creator>Wang, He</creator><creator>Deng, Gaoqiang</creator><creator>Zhang, Yuantao</creator><creator>Song, Wei</creator><creator>Zhao, Bing</creator><creator>Ozaki, Yukihiro</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4479-4004</orcidid><orcidid>https://orcid.org/0000-0002-8671-6979</orcidid><orcidid>https://orcid.org/0000-0002-0044-9743</orcidid><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid></search><sort><creationdate>20200901</creationdate><title>Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model</title><author>Wen, Sisi ; Ma, Xiaowei ; Liu, Hao ; Chen, Gang ; Wang, He ; Deng, Gaoqiang ; Zhang, Yuantao ; Song, Wei ; Zhao, Bing ; Ozaki, Yukihiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a442t-b9299386cc4b37c4f019836af3b5539f402cecaa31ce05984c8ea9df3a8c68b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical chemistry</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Electronics industry</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Mimicry</topic><topic>Monitoring</topic><topic>Nanotechnology</topic><topic>Nanotubes</topic><topic>Oxidase</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Raman spectra</topic><topic>Reaction kinetics</topic><topic>Sensitivity</topic><topic>Spectrum Analysis, Raman - methods</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Sisi</creatorcontrib><creatorcontrib>Ma, Xiaowei</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Chen, Gang</creatorcontrib><creatorcontrib>Wang, He</creatorcontrib><creatorcontrib>Deng, Gaoqiang</creatorcontrib><creatorcontrib>Zhang, Yuantao</creatorcontrib><creatorcontrib>Song, Wei</creatorcontrib><creatorcontrib>Zhao, Bing</creatorcontrib><creatorcontrib>Ozaki, Yukihiro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Sisi</au><au>Ma, Xiaowei</au><au>Liu, Hao</au><au>Chen, Gang</au><au>Wang, He</au><au>Deng, Gaoqiang</au><au>Zhang, Yuantao</au><au>Song, Wei</au><au>Zhao, Bing</au><au>Ozaki, Yukihiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>92</volume><issue>17</issue><spage>11763</spage><epage>11770</epage><pages>11763-11770</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Surface-enhanced Raman scattering (SERS) is a supersensitive technique for monitoring catalytic reactions. However, building a SERS-kinetics model to investigate catalytic efficiency on the surface or interface of the catalyst remains a great challenge. In the present study, we successfully obtained an excellent semiconducting SERS substrate, reduced MnCo2O4 (R-MnCo2O4) nanotubes, whose favorable SERS sensitivity is mainly related to the promoted interfacial charge transfer caused by the introduction of oxygen vacancies as well as the electromagnetic enhancement effect. Furthermore, the R-MnCo2O4 nanotubes showed a favorable oxidase-like activity toward oxidation with the aid of molecular oxygen. It was also showed the oxidase-like catalytic process could be monitored using the SERS technique. A new SERS-kinetics model to monitor the catalytic efficiency of the oxidase-like reaction was developed, and the results demonstrate that the V m values measured by the SERS-kinetics method are close to that obtained by the UV–vis approach, while the K m values measured by the SERS-kinetics method are much lower, demonstrating the better affinity between the enzyme and the substrate from SERS results and further confirming the high sensitivity of the SERS-kinetics approach and the actual enzyme-like reaction on the surface of nanozymes, which provides guidance in understanding the kinetics process and catalytic mechanism of natural enzymatic and other artificial enzymatic reactions. This work demonstrated the improved SERS sensitivity of defective semiconductors for the application of enzyme mimicking, providing a new frontier to construct highly sensitive biosensors.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32697077</pmid><doi>10.1021/acs.analchem.0c01886</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4479-4004</orcidid><orcidid>https://orcid.org/0000-0002-8671-6979</orcidid><orcidid>https://orcid.org/0000-0002-0044-9743</orcidid><orcidid>https://orcid.org/0000-0001-9814-419X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-09, Vol.92 (17), p.11763-11770
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2448687515
source MEDLINE; ACS Publications
subjects Analytical chemistry
Biosensing Techniques - methods
Biosensors
Catalysis
Catalysts
Charge transfer
Chemistry
Electronics industry
Enzymes
Humans
Kinetics
Metal Nanoparticles - chemistry
Mimicry
Monitoring
Nanotechnology
Nanotubes
Oxidase
Oxidation
Oxygen
Raman spectra
Reaction kinetics
Sensitivity
Spectrum Analysis, Raman - methods
Substrates
title Accurate Monitoring Platform for the Surface Catalysis of Nanozyme Validated by Surface-Enhanced Raman-Kinetics Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Monitoring%20Platform%20for%20the%20Surface%20Catalysis%20of%20Nanozyme%20Validated%20by%20Surface-Enhanced%20Raman-Kinetics%20Model&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Wen,%20Sisi&rft.date=2020-09-01&rft.volume=92&rft.issue=17&rft.spage=11763&rft.epage=11770&rft.pages=11763-11770&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c01886&rft_dat=%3Cproquest_cross%3E2448687515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448687515&rft_id=info:pmid/32697077&rfr_iscdi=true