Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent

Multimodality is one of the biggest difficulties for optimization as local optima are often preventing algorithms from making progress. This does not only challenge local strategies that can get stuck. It also hinders meta-heuristics like evolutionary algorithms in convergence to the global optimum....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Steinhoff, Vera, Kerschke, Pascal, Aspar, Pelin, Trautmann, Heike, Grimme, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Steinhoff, Vera
Kerschke, Pascal
Aspar, Pelin
Trautmann, Heike
Grimme, Christian
description Multimodality is one of the biggest difficulties for optimization as local optima are often preventing algorithms from making progress. This does not only challenge local strategies that can get stuck. It also hinders meta-heuristics like evolutionary algorithms in convergence to the global optimum. In this paper we present a new concept of gradient descent, which is able to escape local traps. It relies on multiobjectivization of the original problem and applies the recently proposed and here slightly modified multi-objective local search mechanism MOGSA. We use a sophisticated visualization technique for multi-objective problems to prove the working principle of our idea. As such, this work highlights the transfer of new insights from the multi-objective to the single-objective domain and provides first visual evidence that multiobjectivization can link single-objective local optima in multimodal landscapes.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2448486723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448486723</sourcerecordid><originalsourceid>FETCH-proquest_journals_24484867233</originalsourceid><addsrcrecordid>eNqNjr0KwjAYRYMgWLTvEHAu1CTV4uhPdVAc6l5i_KopaVKT1MGnt0gFR6fD5R4ud4ACQuksShkhIxQ6V8VxTOYLkiQ0QPbYKi_NpQLh5VO-eBc0NiU-GMEVzoFbcV_iXOqbgujUe4BPjZf1V1-BhlJ6hzNravxZ_FF3ll8laI834ETHCRqWXDkIe47RNNue1_uosebRgvNFZVqru6ogjKUs7b5S-p_1BsxETAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448486723</pqid></control><display><type>article</type><title>Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent</title><source>Free E- Journals</source><creator>Steinhoff, Vera ; Kerschke, Pascal ; Aspar, Pelin ; Trautmann, Heike ; Grimme, Christian</creator><creatorcontrib>Steinhoff, Vera ; Kerschke, Pascal ; Aspar, Pelin ; Trautmann, Heike ; Grimme, Christian</creatorcontrib><description>Multimodality is one of the biggest difficulties for optimization as local optima are often preventing algorithms from making progress. This does not only challenge local strategies that can get stuck. It also hinders meta-heuristics like evolutionary algorithms in convergence to the global optimum. In this paper we present a new concept of gradient descent, which is able to escape local traps. It relies on multiobjectivization of the original problem and applies the recently proposed and here slightly modified multi-objective local search mechanism MOGSA. We use a sophisticated visualization technique for multi-objective problems to prove the working principle of our idea. As such, this work highlights the transfer of new insights from the multi-objective to the single-objective domain and provides first visual evidence that multiobjectivization can link single-objective local optima in multimodal landscapes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Evolutionary algorithms ; Multiple objective analysis ; Optimization</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Steinhoff, Vera</creatorcontrib><creatorcontrib>Kerschke, Pascal</creatorcontrib><creatorcontrib>Aspar, Pelin</creatorcontrib><creatorcontrib>Trautmann, Heike</creatorcontrib><creatorcontrib>Grimme, Christian</creatorcontrib><title>Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent</title><title>arXiv.org</title><description>Multimodality is one of the biggest difficulties for optimization as local optima are often preventing algorithms from making progress. This does not only challenge local strategies that can get stuck. It also hinders meta-heuristics like evolutionary algorithms in convergence to the global optimum. In this paper we present a new concept of gradient descent, which is able to escape local traps. It relies on multiobjectivization of the original problem and applies the recently proposed and here slightly modified multi-objective local search mechanism MOGSA. We use a sophisticated visualization technique for multi-objective problems to prove the working principle of our idea. As such, this work highlights the transfer of new insights from the multi-objective to the single-objective domain and provides first visual evidence that multiobjectivization can link single-objective local optima in multimodal landscapes.</description><subject>Algorithms</subject><subject>Evolutionary algorithms</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjr0KwjAYRYMgWLTvEHAu1CTV4uhPdVAc6l5i_KopaVKT1MGnt0gFR6fD5R4ud4ACQuksShkhIxQ6V8VxTOYLkiQ0QPbYKi_NpQLh5VO-eBc0NiU-GMEVzoFbcV_iXOqbgujUe4BPjZf1V1-BhlJ6hzNravxZ_FF3ll8laI834ETHCRqWXDkIe47RNNue1_uosebRgvNFZVqru6ogjKUs7b5S-p_1BsxETAI</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Steinhoff, Vera</creator><creator>Kerschke, Pascal</creator><creator>Aspar, Pelin</creator><creator>Trautmann, Heike</creator><creator>Grimme, Christian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201002</creationdate><title>Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent</title><author>Steinhoff, Vera ; Kerschke, Pascal ; Aspar, Pelin ; Trautmann, Heike ; Grimme, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24484867233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Evolutionary algorithms</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><toplevel>online_resources</toplevel><creatorcontrib>Steinhoff, Vera</creatorcontrib><creatorcontrib>Kerschke, Pascal</creatorcontrib><creatorcontrib>Aspar, Pelin</creatorcontrib><creatorcontrib>Trautmann, Heike</creatorcontrib><creatorcontrib>Grimme, Christian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinhoff, Vera</au><au>Kerschke, Pascal</au><au>Aspar, Pelin</au><au>Trautmann, Heike</au><au>Grimme, Christian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent</atitle><jtitle>arXiv.org</jtitle><date>2020-10-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Multimodality is one of the biggest difficulties for optimization as local optima are often preventing algorithms from making progress. This does not only challenge local strategies that can get stuck. It also hinders meta-heuristics like evolutionary algorithms in convergence to the global optimum. In this paper we present a new concept of gradient descent, which is able to escape local traps. It relies on multiobjectivization of the original problem and applies the recently proposed and here slightly modified multi-objective local search mechanism MOGSA. We use a sophisticated visualization technique for multi-objective problems to prove the working principle of our idea. As such, this work highlights the transfer of new insights from the multi-objective to the single-objective domain and provides first visual evidence that multiobjectivization can link single-objective local optima in multimodal landscapes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2448486723
source Free E- Journals
subjects Algorithms
Evolutionary algorithms
Multiple objective analysis
Optimization
title Multiobjectivization of Local Search: Single-Objective Optimization Benefits From Multi-Objective Gradient Descent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T05%3A00%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multiobjectivization%20of%20Local%20Search:%20Single-Objective%20Optimization%20Benefits%20From%20Multi-Objective%20Gradient%20Descent&rft.jtitle=arXiv.org&rft.au=Steinhoff,%20Vera&rft.date=2020-10-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2448486723%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448486723&rft_id=info:pmid/&rfr_iscdi=true