4,5‐Bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate interaction with gold nanoparticles and flat surfaces to form self‐assembled monolayers

The interaction of the 4,5‐bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate (SPTz−) with different gold surfaces was investigated (nanoparticles, an electrode, and flat sheets). Studies on binding affinity of this dithiophosphin‐triazolate on a gold electrode were performed by cyclic voltammetry (CV)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2020-11, Vol.52 (11), p.707-716
Hauptverfasser: Correa‐Ascencio, Marisol, Galván‐Miranda, Elizabeth K., García‐Montalvo, Verónica, Cao, Roberto, Cea‐Olivares, Raymundo, Jiménez‐Sandoval, Omar, Vera‐Estrada, Irma Lucía
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 716
container_issue 11
container_start_page 707
container_title Surface and interface analysis
container_volume 52
creator Correa‐Ascencio, Marisol
Galván‐Miranda, Elizabeth K.
García‐Montalvo, Verónica
Cao, Roberto
Cea‐Olivares, Raymundo
Jiménez‐Sandoval, Omar
Vera‐Estrada, Irma Lucía
description The interaction of the 4,5‐bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate (SPTz−) with different gold surfaces was investigated (nanoparticles, an electrode, and flat sheets). Studies on binding affinity of this dithiophosphin‐triazolate on a gold electrode were performed by cyclic voltammetry (CV). Voltammograms exhibit two reductive desorption and only one oxidative readsorption, indicating that once reabsorbed, the molecule achieves a unique conformation. The morphology and average size of modified gold nanoparticles were studied by transmission electron microscopy (TEM) (av. diameter of 5.9 ± 1.8 nm). Further characterization was made by UV‐visible (UV‐vis) spectroscopy showing surface plasmon resonance (SPR) at about 580 nm. The bonding configurations of SPTz− on gold have also been investigated by comparing the FT‐IR and FT‐Raman spectra. The 31P{1H} NMR spectrum of capped nanoparticles exhibited two sharp signals at 30.3 and 29.6 ppm and a very broad signal at 72.7 ppm. X‐ray photoelectron spectroscopy (XPS) showed SPTz− can accomplish a strong interaction with gold nanoparticles through bonds involving a sulfur atom and a nitrogen from the triazole ring with a free terminal PS group, forming self‐assembled monolayers (SAM). This may allow subsequent functionalization through free S/N atoms of the formed SAMs. The SPTz− packing led to a reduction in packing density that permits large spaces between adsorbed headgroups and the inclusion of carbon and oxygen impurities from small molecules; nevertheless, oxidized sulfur or nitrogen species were not detected, indicating the chemical stability of the obtained SAMs.
doi_str_mv 10.1002/sia.6859
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448479179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448479179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2919-5c883b9125bf5253c56b39495b0744067e38781fcc074bd77ada82407ce5b0d33</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo4X8BECbhSmY5KmbbIcB28w4EJdlzRNbSST1CTDUFc-gr6iT2J03Lo65OTjP_ADcILRDCNELoIWs5IVfAdMMOJlxjlmu2CCMCUZoQTvg4MQXhBCLGflBHzSafH1_nGpw1mrh17Z0cReu6F3Yei1daM5T994SqZ5mtFr8eaMiApqG5UXMmpn4UbHHj4700IrrBuEj1oaFaCwLeyShmHtOyHTJjrYOb-CQZku5YkQ1KoxqoUrZ1PuqHw4AnudMEEd_81D8HR99bi4zZb3N3eL-TKThGOeFZKxvOGYFE1XkCKXRdnknPKiQRWlqKxUziqGOynTu2mrSrSCEYoqqRJp8_wQnG5zB-9e1yrE-sWtvU0na0IpoxXHFU_qbKukdyF41dWD1yvhxxqj-qfwOhVe_xSeaLalG23U-K-rH-7mv_4bzKOHUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448479179</pqid></control><display><type>article</type><title>4,5‐Bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate interaction with gold nanoparticles and flat surfaces to form self‐assembled monolayers</title><source>Wiley Online Library Journals</source><creator>Correa‐Ascencio, Marisol ; Galván‐Miranda, Elizabeth K. ; García‐Montalvo, Verónica ; Cao, Roberto ; Cea‐Olivares, Raymundo ; Jiménez‐Sandoval, Omar ; Vera‐Estrada, Irma Lucía</creator><creatorcontrib>Correa‐Ascencio, Marisol ; Galván‐Miranda, Elizabeth K. ; García‐Montalvo, Verónica ; Cao, Roberto ; Cea‐Olivares, Raymundo ; Jiménez‐Sandoval, Omar ; Vera‐Estrada, Irma Lucía</creatorcontrib><description>The interaction of the 4,5‐bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate (SPTz−) with different gold surfaces was investigated (nanoparticles, an electrode, and flat sheets). Studies on binding affinity of this dithiophosphin‐triazolate on a gold electrode were performed by cyclic voltammetry (CV). Voltammograms exhibit two reductive desorption and only one oxidative readsorption, indicating that once reabsorbed, the molecule achieves a unique conformation. The morphology and average size of modified gold nanoparticles were studied by transmission electron microscopy (TEM) (av. diameter of 5.9 ± 1.8 nm). Further characterization was made by UV‐visible (UV‐vis) spectroscopy showing surface plasmon resonance (SPR) at about 580 nm. The bonding configurations of SPTz− on gold have also been investigated by comparing the FT‐IR and FT‐Raman spectra. The 31P{1H} NMR spectrum of capped nanoparticles exhibited two sharp signals at 30.3 and 29.6 ppm and a very broad signal at 72.7 ppm. X‐ray photoelectron spectroscopy (XPS) showed SPTz− can accomplish a strong interaction with gold nanoparticles through bonds involving a sulfur atom and a nitrogen from the triazole ring with a free terminal PS group, forming self‐assembled monolayers (SAM). This may allow subsequent functionalization through free S/N atoms of the formed SAMs. The SPTz− packing led to a reduction in packing density that permits large spaces between adsorbed headgroups and the inclusion of carbon and oxygen impurities from small molecules; nevertheless, oxidized sulfur or nitrogen species were not detected, indicating the chemical stability of the obtained SAMs.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.6859</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; dithiophosphinoyl‐1,2,3‐triazolate ; Electrodes ; Flat surfaces ; FT‐IR ; FT‐Raman ; Gold ; gold nanoparticles ; Monolayers ; Morphology ; Nanoparticles ; Nitrogen ; NMR ; Nuclear magnetic resonance ; Packing density ; Photoelectrons ; Raman spectra ; self‐assembled monolayer ; Spectroscopy ; Spectrum analysis ; Strong interactions (field theory) ; Sulfur ; Triazoles ; X‐photoelectron spectroscopy</subject><ispartof>Surface and interface analysis, 2020-11, Vol.52 (11), p.707-716</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2919-5c883b9125bf5253c56b39495b0744067e38781fcc074bd77ada82407ce5b0d33</cites><orcidid>0000-0002-6220-9702</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.6859$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.6859$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Correa‐Ascencio, Marisol</creatorcontrib><creatorcontrib>Galván‐Miranda, Elizabeth K.</creatorcontrib><creatorcontrib>García‐Montalvo, Verónica</creatorcontrib><creatorcontrib>Cao, Roberto</creatorcontrib><creatorcontrib>Cea‐Olivares, Raymundo</creatorcontrib><creatorcontrib>Jiménez‐Sandoval, Omar</creatorcontrib><creatorcontrib>Vera‐Estrada, Irma Lucía</creatorcontrib><title>4,5‐Bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate interaction with gold nanoparticles and flat surfaces to form self‐assembled monolayers</title><title>Surface and interface analysis</title><description>The interaction of the 4,5‐bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate (SPTz−) with different gold surfaces was investigated (nanoparticles, an electrode, and flat sheets). Studies on binding affinity of this dithiophosphin‐triazolate on a gold electrode were performed by cyclic voltammetry (CV). Voltammograms exhibit two reductive desorption and only one oxidative readsorption, indicating that once reabsorbed, the molecule achieves a unique conformation. The morphology and average size of modified gold nanoparticles were studied by transmission electron microscopy (TEM) (av. diameter of 5.9 ± 1.8 nm). Further characterization was made by UV‐visible (UV‐vis) spectroscopy showing surface plasmon resonance (SPR) at about 580 nm. The bonding configurations of SPTz− on gold have also been investigated by comparing the FT‐IR and FT‐Raman spectra. The 31P{1H} NMR spectrum of capped nanoparticles exhibited two sharp signals at 30.3 and 29.6 ppm and a very broad signal at 72.7 ppm. X‐ray photoelectron spectroscopy (XPS) showed SPTz− can accomplish a strong interaction with gold nanoparticles through bonds involving a sulfur atom and a nitrogen from the triazole ring with a free terminal PS group, forming self‐assembled monolayers (SAM). This may allow subsequent functionalization through free S/N atoms of the formed SAMs. The SPTz− packing led to a reduction in packing density that permits large spaces between adsorbed headgroups and the inclusion of carbon and oxygen impurities from small molecules; nevertheless, oxidized sulfur or nitrogen species were not detected, indicating the chemical stability of the obtained SAMs.</description><subject>Bonding strength</subject><subject>dithiophosphinoyl‐1,2,3‐triazolate</subject><subject>Electrodes</subject><subject>Flat surfaces</subject><subject>FT‐IR</subject><subject>FT‐Raman</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>Monolayers</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>Nitrogen</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Packing density</subject><subject>Photoelectrons</subject><subject>Raman spectra</subject><subject>self‐assembled monolayer</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Strong interactions (field theory)</subject><subject>Sulfur</subject><subject>Triazoles</subject><subject>X‐photoelectron spectroscopy</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo4X8BECbhSmY5KmbbIcB28w4EJdlzRNbSST1CTDUFc-gr6iT2J03Lo65OTjP_ADcILRDCNELoIWs5IVfAdMMOJlxjlmu2CCMCUZoQTvg4MQXhBCLGflBHzSafH1_nGpw1mrh17Z0cReu6F3Yei1daM5T994SqZ5mtFr8eaMiApqG5UXMmpn4UbHHj4700IrrBuEj1oaFaCwLeyShmHtOyHTJjrYOb-CQZku5YkQ1KoxqoUrZ1PuqHw4AnudMEEd_81D8HR99bi4zZb3N3eL-TKThGOeFZKxvOGYFE1XkCKXRdnknPKiQRWlqKxUziqGOynTu2mrSrSCEYoqqRJp8_wQnG5zB-9e1yrE-sWtvU0na0IpoxXHFU_qbKukdyF41dWD1yvhxxqj-qfwOhVe_xSeaLalG23U-K-rH-7mv_4bzKOHUg</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Correa‐Ascencio, Marisol</creator><creator>Galván‐Miranda, Elizabeth K.</creator><creator>García‐Montalvo, Verónica</creator><creator>Cao, Roberto</creator><creator>Cea‐Olivares, Raymundo</creator><creator>Jiménez‐Sandoval, Omar</creator><creator>Vera‐Estrada, Irma Lucía</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6220-9702</orcidid></search><sort><creationdate>202011</creationdate><title>4,5‐Bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate interaction with gold nanoparticles and flat surfaces to form self‐assembled monolayers</title><author>Correa‐Ascencio, Marisol ; Galván‐Miranda, Elizabeth K. ; García‐Montalvo, Verónica ; Cao, Roberto ; Cea‐Olivares, Raymundo ; Jiménez‐Sandoval, Omar ; Vera‐Estrada, Irma Lucía</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2919-5c883b9125bf5253c56b39495b0744067e38781fcc074bd77ada82407ce5b0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bonding strength</topic><topic>dithiophosphinoyl‐1,2,3‐triazolate</topic><topic>Electrodes</topic><topic>Flat surfaces</topic><topic>FT‐IR</topic><topic>FT‐Raman</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>Monolayers</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>Nitrogen</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Packing density</topic><topic>Photoelectrons</topic><topic>Raman spectra</topic><topic>self‐assembled monolayer</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Strong interactions (field theory)</topic><topic>Sulfur</topic><topic>Triazoles</topic><topic>X‐photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Correa‐Ascencio, Marisol</creatorcontrib><creatorcontrib>Galván‐Miranda, Elizabeth K.</creatorcontrib><creatorcontrib>García‐Montalvo, Verónica</creatorcontrib><creatorcontrib>Cao, Roberto</creatorcontrib><creatorcontrib>Cea‐Olivares, Raymundo</creatorcontrib><creatorcontrib>Jiménez‐Sandoval, Omar</creatorcontrib><creatorcontrib>Vera‐Estrada, Irma Lucía</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Correa‐Ascencio, Marisol</au><au>Galván‐Miranda, Elizabeth K.</au><au>García‐Montalvo, Verónica</au><au>Cao, Roberto</au><au>Cea‐Olivares, Raymundo</au><au>Jiménez‐Sandoval, Omar</au><au>Vera‐Estrada, Irma Lucía</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>4,5‐Bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate interaction with gold nanoparticles and flat surfaces to form self‐assembled monolayers</atitle><jtitle>Surface and interface analysis</jtitle><date>2020-11</date><risdate>2020</risdate><volume>52</volume><issue>11</issue><spage>707</spage><epage>716</epage><pages>707-716</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><abstract>The interaction of the 4,5‐bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate (SPTz−) with different gold surfaces was investigated (nanoparticles, an electrode, and flat sheets). Studies on binding affinity of this dithiophosphin‐triazolate on a gold electrode were performed by cyclic voltammetry (CV). Voltammograms exhibit two reductive desorption and only one oxidative readsorption, indicating that once reabsorbed, the molecule achieves a unique conformation. The morphology and average size of modified gold nanoparticles were studied by transmission electron microscopy (TEM) (av. diameter of 5.9 ± 1.8 nm). Further characterization was made by UV‐visible (UV‐vis) spectroscopy showing surface plasmon resonance (SPR) at about 580 nm. The bonding configurations of SPTz− on gold have also been investigated by comparing the FT‐IR and FT‐Raman spectra. The 31P{1H} NMR spectrum of capped nanoparticles exhibited two sharp signals at 30.3 and 29.6 ppm and a very broad signal at 72.7 ppm. X‐ray photoelectron spectroscopy (XPS) showed SPTz− can accomplish a strong interaction with gold nanoparticles through bonds involving a sulfur atom and a nitrogen from the triazole ring with a free terminal PS group, forming self‐assembled monolayers (SAM). This may allow subsequent functionalization through free S/N atoms of the formed SAMs. The SPTz− packing led to a reduction in packing density that permits large spaces between adsorbed headgroups and the inclusion of carbon and oxygen impurities from small molecules; nevertheless, oxidized sulfur or nitrogen species were not detected, indicating the chemical stability of the obtained SAMs.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/sia.6859</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6220-9702</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2020-11, Vol.52 (11), p.707-716
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_journals_2448479179
source Wiley Online Library Journals
subjects Bonding strength
dithiophosphinoyl‐1,2,3‐triazolate
Electrodes
Flat surfaces
FT‐IR
FT‐Raman
Gold
gold nanoparticles
Monolayers
Morphology
Nanoparticles
Nitrogen
NMR
Nuclear magnetic resonance
Packing density
Photoelectrons
Raman spectra
self‐assembled monolayer
Spectroscopy
Spectrum analysis
Strong interactions (field theory)
Sulfur
Triazoles
X‐photoelectron spectroscopy
title 4,5‐Bis(diphenylthiophosphinoyl)‐1,2,3‐triazolate interaction with gold nanoparticles and flat surfaces to form self‐assembled monolayers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T17%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=4,5%E2%80%90Bis(diphenylthiophosphinoyl)%E2%80%901,2,3%E2%80%90triazolate%20interaction%20with%20gold%20nanoparticles%20and%20flat%20surfaces%20to%20form%20self%E2%80%90assembled%20monolayers&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Correa%E2%80%90Ascencio,%20Marisol&rft.date=2020-11&rft.volume=52&rft.issue=11&rft.spage=707&rft.epage=716&rft.pages=707-716&rft.issn=0142-2421&rft.eissn=1096-9918&rft_id=info:doi/10.1002/sia.6859&rft_dat=%3Cproquest_cross%3E2448479179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448479179&rft_id=info:pmid/&rfr_iscdi=true