Method of information entropy for convergence assessment of molecular dynamics simulations

The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2020-10, Vol.128 (13)
Hauptverfasser: Talaat, Khaled, Cowen, Benjamin, Anderoglu, Osman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Journal of applied physics
container_volume 128
creator Talaat, Khaled
Cowen, Benjamin
Anderoglu, Osman
description The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon information entropy formalism is used to monitor the convergence of the atom motion to a steady state in a continuous spatial domain and is also used to assess the stationarity of calculated multidimensional fields such as the temperature field in a discrete spatial domain. It is demonstrated in this work that monitoring the information entropy of the atom position matrix provides a clear indicator of reaching steady state in radiation damage simulations, non-equilibrium molecular dynamics thermal conductivity computations, and simulations of Poiseuille and Couette flow in nanochannels. A main advantage of the present technique is that it is non-local and relies on fundamental quantities available in all molecular dynamics simulations. Unlike monitoring average temperature, the technique is applicable to simulations that conserve total energy such as reverse non-equilibrium molecular dynamics thermal conductivity computations and to simulations where energy dissipates through a boundary as in radiation damage simulations. The method is applied to simulations of iron using the Tersoff/ZBL splined potential, silicon using the Stillinger–Weber potential, and to Lennard–Jones fluid. Its applicability to both solids and fluids shows that the technique has potential for generalization to other areas in molecular dynamics.
doi_str_mv 10.1063/5.0019078
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2448472724</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448472724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-ee8585281c878478a9cfe95b59b7401f51160b8567eebc15abf9e47a98e64cb93</originalsourceid><addsrcrecordid>eNp90M9PwyAUB3BiNHFOD_4HjZ406YQWChzN4q9kxotevBDKHq7LChO6JfvvpXbRg4knkseH73s8hM4JnhBclTdsgjGRmIsDNCJYyJwzhg_RCOOC5EJyeYxOYlwmREQpR-j9GbqFn2feZo2zPrS6a7zLwHXBr3dZqmTGuy2ED3AGMh0jxNim6_5F61dgNisdsvnO6bYxMYtNmwp9RjxFR1avIpztzzF6u797nT7ms5eHp-ntLDcllV0OIJhghSBGcEG50NJYkKxmsuYUE8sIqXAtWMUBakOYrq0EyrUUUFFTy3KMLoZcH7tGRdN0YBZpaAemU6TimHKa0OWA1sF_biB2auk3waW5VEFp6lvwoldXgzLBxxjAqnVoWh12imDV71cxtd9vsteD7Tt-__gHb334hWo9t__hv8lfCoqJrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448472724</pqid></control><display><type>article</type><title>Method of information entropy for convergence assessment of molecular dynamics simulations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Talaat, Khaled ; Cowen, Benjamin ; Anderoglu, Osman</creator><creatorcontrib>Talaat, Khaled ; Cowen, Benjamin ; Anderoglu, Osman</creatorcontrib><description>The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon information entropy formalism is used to monitor the convergence of the atom motion to a steady state in a continuous spatial domain and is also used to assess the stationarity of calculated multidimensional fields such as the temperature field in a discrete spatial domain. It is demonstrated in this work that monitoring the information entropy of the atom position matrix provides a clear indicator of reaching steady state in radiation damage simulations, non-equilibrium molecular dynamics thermal conductivity computations, and simulations of Poiseuille and Couette flow in nanochannels. A main advantage of the present technique is that it is non-local and relies on fundamental quantities available in all molecular dynamics simulations. Unlike monitoring average temperature, the technique is applicable to simulations that conserve total energy such as reverse non-equilibrium molecular dynamics thermal conductivity computations and to simulations where energy dissipates through a boundary as in radiation damage simulations. The method is applied to simulations of iron using the Tersoff/ZBL splined potential, silicon using the Stillinger–Weber potential, and to Lennard–Jones fluid. Its applicability to both solids and fluids shows that the technique has potential for generalization to other areas in molecular dynamics.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0019078</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Computer simulation ; Convergence ; Couette flow ; Domains ; Energy conservation ; Energy dissipation ; Entropy ; Entropy (Information theory) ; Heat conductivity ; Heat transfer ; Molecular dynamics ; Monitoring ; Nanochannels ; Position indicators ; Radiation damage ; Simulation ; Steady state ; Temperature distribution ; Thermal conductivity</subject><ispartof>Journal of applied physics, 2020-10, Vol.128 (13)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c349t-ee8585281c878478a9cfe95b59b7401f51160b8567eebc15abf9e47a98e64cb93</cites><orcidid>0000-0002-1797-6603 ; 0000-0001-5529-6556 ; 0000000155296556 ; 0000000217976603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0019078$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1670474$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Talaat, Khaled</creatorcontrib><creatorcontrib>Cowen, Benjamin</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><title>Method of information entropy for convergence assessment of molecular dynamics simulations</title><title>Journal of applied physics</title><description>The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon information entropy formalism is used to monitor the convergence of the atom motion to a steady state in a continuous spatial domain and is also used to assess the stationarity of calculated multidimensional fields such as the temperature field in a discrete spatial domain. It is demonstrated in this work that monitoring the information entropy of the atom position matrix provides a clear indicator of reaching steady state in radiation damage simulations, non-equilibrium molecular dynamics thermal conductivity computations, and simulations of Poiseuille and Couette flow in nanochannels. A main advantage of the present technique is that it is non-local and relies on fundamental quantities available in all molecular dynamics simulations. Unlike monitoring average temperature, the technique is applicable to simulations that conserve total energy such as reverse non-equilibrium molecular dynamics thermal conductivity computations and to simulations where energy dissipates through a boundary as in radiation damage simulations. The method is applied to simulations of iron using the Tersoff/ZBL splined potential, silicon using the Stillinger–Weber potential, and to Lennard–Jones fluid. Its applicability to both solids and fluids shows that the technique has potential for generalization to other areas in molecular dynamics.</description><subject>Applied physics</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Couette flow</subject><subject>Domains</subject><subject>Energy conservation</subject><subject>Energy dissipation</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Molecular dynamics</subject><subject>Monitoring</subject><subject>Nanochannels</subject><subject>Position indicators</subject><subject>Radiation damage</subject><subject>Simulation</subject><subject>Steady state</subject><subject>Temperature distribution</subject><subject>Thermal conductivity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90M9PwyAUB3BiNHFOD_4HjZ406YQWChzN4q9kxotevBDKHq7LChO6JfvvpXbRg4knkseH73s8hM4JnhBclTdsgjGRmIsDNCJYyJwzhg_RCOOC5EJyeYxOYlwmREQpR-j9GbqFn2feZo2zPrS6a7zLwHXBr3dZqmTGuy2ED3AGMh0jxNim6_5F61dgNisdsvnO6bYxMYtNmwp9RjxFR1avIpztzzF6u797nT7ms5eHp-ntLDcllV0OIJhghSBGcEG50NJYkKxmsuYUE8sIqXAtWMUBakOYrq0EyrUUUFFTy3KMLoZcH7tGRdN0YBZpaAemU6TimHKa0OWA1sF_biB2auk3waW5VEFp6lvwoldXgzLBxxjAqnVoWh12imDV71cxtd9vsteD7Tt-__gHb334hWo9t__hv8lfCoqJrg</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Talaat, Khaled</creator><creator>Cowen, Benjamin</creator><creator>Anderoglu, Osman</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1797-6603</orcidid><orcidid>https://orcid.org/0000-0001-5529-6556</orcidid><orcidid>https://orcid.org/0000000155296556</orcidid><orcidid>https://orcid.org/0000000217976603</orcidid></search><sort><creationdate>20201007</creationdate><title>Method of information entropy for convergence assessment of molecular dynamics simulations</title><author>Talaat, Khaled ; Cowen, Benjamin ; Anderoglu, Osman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-ee8585281c878478a9cfe95b59b7401f51160b8567eebc15abf9e47a98e64cb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Couette flow</topic><topic>Domains</topic><topic>Energy conservation</topic><topic>Energy dissipation</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Molecular dynamics</topic><topic>Monitoring</topic><topic>Nanochannels</topic><topic>Position indicators</topic><topic>Radiation damage</topic><topic>Simulation</topic><topic>Steady state</topic><topic>Temperature distribution</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Talaat, Khaled</creatorcontrib><creatorcontrib>Cowen, Benjamin</creatorcontrib><creatorcontrib>Anderoglu, Osman</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Talaat, Khaled</au><au>Cowen, Benjamin</au><au>Anderoglu, Osman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method of information entropy for convergence assessment of molecular dynamics simulations</atitle><jtitle>Journal of applied physics</jtitle><date>2020-10-07</date><risdate>2020</risdate><volume>128</volume><issue>13</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon information entropy formalism is used to monitor the convergence of the atom motion to a steady state in a continuous spatial domain and is also used to assess the stationarity of calculated multidimensional fields such as the temperature field in a discrete spatial domain. It is demonstrated in this work that monitoring the information entropy of the atom position matrix provides a clear indicator of reaching steady state in radiation damage simulations, non-equilibrium molecular dynamics thermal conductivity computations, and simulations of Poiseuille and Couette flow in nanochannels. A main advantage of the present technique is that it is non-local and relies on fundamental quantities available in all molecular dynamics simulations. Unlike monitoring average temperature, the technique is applicable to simulations that conserve total energy such as reverse non-equilibrium molecular dynamics thermal conductivity computations and to simulations where energy dissipates through a boundary as in radiation damage simulations. The method is applied to simulations of iron using the Tersoff/ZBL splined potential, silicon using the Stillinger–Weber potential, and to Lennard–Jones fluid. Its applicability to both solids and fluids shows that the technique has potential for generalization to other areas in molecular dynamics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0019078</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1797-6603</orcidid><orcidid>https://orcid.org/0000-0001-5529-6556</orcidid><orcidid>https://orcid.org/0000000155296556</orcidid><orcidid>https://orcid.org/0000000217976603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2020-10, Vol.128 (13)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2448472724
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Computer simulation
Convergence
Couette flow
Domains
Energy conservation
Energy dissipation
Entropy
Entropy (Information theory)
Heat conductivity
Heat transfer
Molecular dynamics
Monitoring
Nanochannels
Position indicators
Radiation damage
Simulation
Steady state
Temperature distribution
Thermal conductivity
title Method of information entropy for convergence assessment of molecular dynamics simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20of%20information%20entropy%20for%20convergence%20assessment%20of%20molecular%20dynamics%20simulations&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Talaat,%20Khaled&rft.date=2020-10-07&rft.volume=128&rft.issue=13&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0019078&rft_dat=%3Cproquest_osti_%3E2448472724%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448472724&rft_id=info:pmid/&rfr_iscdi=true