Minimum covering color Laplacian energy of a graph
In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2261 |
creator | Kumar, R. Pradeep Kanna, M. R. Rajesh |
description | In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established. |
doi_str_mv | 10.1063/5.0016786 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2448469723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448469723</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-1a583f2ea3af15b3031c6e8ec09808b9cbbb21ee5bf392b34f1c26daf6a27fcd3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKcP_oOCb0Jnbm6Tpo8ydAoVXxR8CzdZUjO2tqadsH9vZXs65-HjHPgYuwW-AK7wQS44B1VqdcZmICXkpQJ1zmacV0UuCvy6ZFfDsOFcVGWpZ0y8xTbu9rvMdb8-xbaZyrZLWU39llykNvOtT80h60JGWZOo_75mF4G2g7855Zx9Pj99LF_y-n31unys8x4QxxxIagzCE1IAaZEjOOW1d7zSXNvKWWsFeC9twEpYLAI4odYUFIkyuDXO2d1xt0_dz94Po9l0-9ROl0YUhS5UVQqcqPsjNbg40hi71vQp7igdDHDz78RIc3KCf1AqUsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2448469723</pqid></control><display><type>conference_proceeding</type><title>Minimum covering color Laplacian energy of a graph</title><source>AIP Journals Complete</source><creator>Kumar, R. Pradeep ; Kanna, M. R. Rajesh</creator><contributor>Narayanamoorthy, Samayan</contributor><creatorcontrib>Kumar, R. Pradeep ; Kanna, M. R. Rajesh ; Narayanamoorthy, Samayan</creatorcontrib><description>In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0016786</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Color ; Graph theory ; Lower bounds</subject><ispartof>AIP conference proceedings, 2020, Vol.2261 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0016786$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Narayanamoorthy, Samayan</contributor><creatorcontrib>Kumar, R. Pradeep</creatorcontrib><creatorcontrib>Kanna, M. R. Rajesh</creatorcontrib><title>Minimum covering color Laplacian energy of a graph</title><title>AIP conference proceedings</title><description>In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.</description><subject>Color</subject><subject>Graph theory</subject><subject>Lower bounds</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkFFLwzAUhYMoOKcP_oOCb0Jnbm6Tpo8ydAoVXxR8CzdZUjO2tqadsH9vZXs65-HjHPgYuwW-AK7wQS44B1VqdcZmICXkpQJ1zmacV0UuCvy6ZFfDsOFcVGWpZ0y8xTbu9rvMdb8-xbaZyrZLWU39llykNvOtT80h60JGWZOo_75mF4G2g7855Zx9Pj99LF_y-n31unys8x4QxxxIagzCE1IAaZEjOOW1d7zSXNvKWWsFeC9twEpYLAI4odYUFIkyuDXO2d1xt0_dz94Po9l0-9ROl0YUhS5UVQqcqPsjNbg40hi71vQp7igdDHDz78RIc3KCf1AqUsg</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Kumar, R. Pradeep</creator><creator>Kanna, M. R. Rajesh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201005</creationdate><title>Minimum covering color Laplacian energy of a graph</title><author>Kumar, R. Pradeep ; Kanna, M. R. Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-1a583f2ea3af15b3031c6e8ec09808b9cbbb21ee5bf392b34f1c26daf6a27fcd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Color</topic><topic>Graph theory</topic><topic>Lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, R. Pradeep</creatorcontrib><creatorcontrib>Kanna, M. R. Rajesh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, R. Pradeep</au><au>Kanna, M. R. Rajesh</au><au>Narayanamoorthy, Samayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum covering color Laplacian energy of a graph</atitle><btitle>AIP conference proceedings</btitle><date>2020-10-05</date><risdate>2020</risdate><volume>2261</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0016786</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2020, Vol.2261 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2448469723 |
source | AIP Journals Complete |
subjects | Color Graph theory Lower bounds |
title | Minimum covering color Laplacian energy of a graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum%20covering%20color%20Laplacian%20energy%20of%20a%20graph&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20R.%20Pradeep&rft.date=2020-10-05&rft.volume=2261&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0016786&rft_dat=%3Cproquest_scita%3E2448469723%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448469723&rft_id=info:pmid/&rfr_iscdi=true |