Minimum covering color Laplacian energy of a graph

In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Kumar, R. Pradeep, Kanna, M. R. Rajesh
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2261
creator Kumar, R. Pradeep
Kanna, M. R. Rajesh
description In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.
doi_str_mv 10.1063/5.0016786
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2448469723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448469723</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-1a583f2ea3af15b3031c6e8ec09808b9cbbb21ee5bf392b34f1c26daf6a27fcd3</originalsourceid><addsrcrecordid>eNotkFFLwzAUhYMoOKcP_oOCb0Jnbm6Tpo8ydAoVXxR8CzdZUjO2tqadsH9vZXs65-HjHPgYuwW-AK7wQS44B1VqdcZmICXkpQJ1zmacV0UuCvy6ZFfDsOFcVGWpZ0y8xTbu9rvMdb8-xbaZyrZLWU39llykNvOtT80h60JGWZOo_75mF4G2g7855Zx9Pj99LF_y-n31unys8x4QxxxIagzCE1IAaZEjOOW1d7zSXNvKWWsFeC9twEpYLAI4odYUFIkyuDXO2d1xt0_dz94Po9l0-9ROl0YUhS5UVQqcqPsjNbg40hi71vQp7igdDHDz78RIc3KCf1AqUsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2448469723</pqid></control><display><type>conference_proceeding</type><title>Minimum covering color Laplacian energy of a graph</title><source>AIP Journals Complete</source><creator>Kumar, R. Pradeep ; Kanna, M. R. Rajesh</creator><contributor>Narayanamoorthy, Samayan</contributor><creatorcontrib>Kumar, R. Pradeep ; Kanna, M. R. Rajesh ; Narayanamoorthy, Samayan</creatorcontrib><description>In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0016786</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Color ; Graph theory ; Lower bounds</subject><ispartof>AIP conference proceedings, 2020, Vol.2261 (1)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0016786$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Narayanamoorthy, Samayan</contributor><creatorcontrib>Kumar, R. Pradeep</creatorcontrib><creatorcontrib>Kanna, M. R. Rajesh</creatorcontrib><title>Minimum covering color Laplacian energy of a graph</title><title>AIP conference proceedings</title><description>In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.</description><subject>Color</subject><subject>Graph theory</subject><subject>Lower bounds</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotkFFLwzAUhYMoOKcP_oOCb0Jnbm6Tpo8ydAoVXxR8CzdZUjO2tqadsH9vZXs65-HjHPgYuwW-AK7wQS44B1VqdcZmICXkpQJ1zmacV0UuCvy6ZFfDsOFcVGWpZ0y8xTbu9rvMdb8-xbaZyrZLWU39llykNvOtT80h60JGWZOo_75mF4G2g7855Zx9Pj99LF_y-n31unys8x4QxxxIagzCE1IAaZEjOOW1d7zSXNvKWWsFeC9twEpYLAI4odYUFIkyuDXO2d1xt0_dz94Po9l0-9ROl0YUhS5UVQqcqPsjNbg40hi71vQp7igdDHDz78RIc3KCf1AqUsg</recordid><startdate>20201005</startdate><enddate>20201005</enddate><creator>Kumar, R. Pradeep</creator><creator>Kanna, M. R. Rajesh</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20201005</creationdate><title>Minimum covering color Laplacian energy of a graph</title><author>Kumar, R. Pradeep ; Kanna, M. R. Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-1a583f2ea3af15b3031c6e8ec09808b9cbbb21ee5bf392b34f1c26daf6a27fcd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Color</topic><topic>Graph theory</topic><topic>Lower bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, R. Pradeep</creatorcontrib><creatorcontrib>Kanna, M. R. Rajesh</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, R. Pradeep</au><au>Kanna, M. R. Rajesh</au><au>Narayanamoorthy, Samayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum covering color Laplacian energy of a graph</atitle><btitle>AIP conference proceedings</btitle><date>2020-10-05</date><risdate>2020</risdate><volume>2261</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>In this paper, we introduced the concept of minimum covering color Laplacian energy LEχC(G) of a graph G and computed minimum covering chromatic Laplacian energies of star graph, complete graph, crown graph, bipartite graph and cocktail graphs. Upper and lower bounds for LEcC(G) are also established.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0016786</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2020, Vol.2261 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2448469723
source AIP Journals Complete
subjects Color
Graph theory
Lower bounds
title Minimum covering color Laplacian energy of a graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum%20covering%20color%20Laplacian%20energy%20of%20a%20graph&rft.btitle=AIP%20conference%20proceedings&rft.au=Kumar,%20R.%20Pradeep&rft.date=2020-10-05&rft.volume=2261&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0016786&rft_dat=%3Cproquest_scita%3E2448469723%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448469723&rft_id=info:pmid/&rfr_iscdi=true