Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219
AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 k...
Gespeichert in:
Veröffentlicht in: | Fatigue & fracture of engineering materials & structures 2020-11, Vol.43 (11), p.2608-2622 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2622 |
---|---|
container_issue | 11 |
container_start_page | 2608 |
container_title | Fatigue & fracture of engineering materials & structures |
container_volume | 43 |
creator | B., Blessto Katakam, Sivaprasad Veerappan, Muthupandi M., Arumugam |
description | AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles. |
doi_str_mv | 10.1111/ffe.13320 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448468134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448468134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGk9b849lhVLSAhsYDEFjnOOUkJcbETUL89acPKLXfD7717egjdUrKg4yydgwXlnJEzNKNCkoRJnZ6jmcpSmWSper9EVzHuCKFScD5Dw2ZU2B57h20w9gPvTV9j05W4bqrjUbWAq2CaDhd-6EoTGojYd9iNdD8EwL0fqrqDGE8qZ_qmGgAXUJvvxg9hcj744NsWSrxaMUb1Nbpwpo1w87fn6G27eV0_Js8vD0_r1XNimc5IkkqmUptprjItBThinSgywiQ4ZVLLCgBJlTaFhMIK0LJUhXZOZ9RqrTnlc3Q3-e6D_xog9vlujNSNL3MmhBJSUS5G6n6ibPAxBnD5PjSfJhxySvJjq_nYUX5qdWSXE_vTtHD4H8y3282k-AXLP3jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448468134</pqid></control><display><type>article</type><title>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>B., Blessto ; Katakam, Sivaprasad ; Veerappan, Muthupandi ; M., Arumugam</creator><creatorcontrib>B., Blessto ; Katakam, Sivaprasad ; Veerappan, Muthupandi ; M., Arumugam</creatorcontrib><description>AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13320</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>AA2219 ; Alloys ; Aluminum base alloys ; Crack propagation ; Crack tips ; cryorolling ; fatigue crack growth rate ; Fatigue failure ; Fracture mechanics ; Fracture toughness ; Grain boundaries ; HAGBs ; J‐R curve ; Metal fatigue ; Paris law ; Plane stress ; Plastic zones ; Room temperature ; Subzero temperature ; Tensile properties</subject><ispartof>Fatigue & fracture of engineering materials & structures, 2020-11, Vol.43 (11), p.2608-2622</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</citedby><cites>FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</cites><orcidid>0000-0003-4358-3659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>B., Blessto</creatorcontrib><creatorcontrib>Katakam, Sivaprasad</creatorcontrib><creatorcontrib>Veerappan, Muthupandi</creatorcontrib><creatorcontrib>M., Arumugam</creatorcontrib><title>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</title><title>Fatigue & fracture of engineering materials & structures</title><description>AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.</description><subject>AA2219</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>cryorolling</subject><subject>fatigue crack growth rate</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Grain boundaries</subject><subject>HAGBs</subject><subject>J‐R curve</subject><subject>Metal fatigue</subject><subject>Paris law</subject><subject>Plane stress</subject><subject>Plastic zones</subject><subject>Room temperature</subject><subject>Subzero temperature</subject><subject>Tensile properties</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGk9b849lhVLSAhsYDEFjnOOUkJcbETUL89acPKLXfD7717egjdUrKg4yydgwXlnJEzNKNCkoRJnZ6jmcpSmWSper9EVzHuCKFScD5Dw2ZU2B57h20w9gPvTV9j05W4bqrjUbWAq2CaDhd-6EoTGojYd9iNdD8EwL0fqrqDGE8qZ_qmGgAXUJvvxg9hcj744NsWSrxaMUb1Nbpwpo1w87fn6G27eV0_Js8vD0_r1XNimc5IkkqmUptprjItBThinSgywiQ4ZVLLCgBJlTaFhMIK0LJUhXZOZ9RqrTnlc3Q3-e6D_xog9vlujNSNL3MmhBJSUS5G6n6ibPAxBnD5PjSfJhxySvJjq_nYUX5qdWSXE_vTtHD4H8y3282k-AXLP3jw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>B., Blessto</creator><creator>Katakam, Sivaprasad</creator><creator>Veerappan, Muthupandi</creator><creator>M., Arumugam</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4358-3659</orcidid></search><sort><creationdate>202011</creationdate><title>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</title><author>B., Blessto ; Katakam, Sivaprasad ; Veerappan, Muthupandi ; M., Arumugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AA2219</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>cryorolling</topic><topic>fatigue crack growth rate</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Grain boundaries</topic><topic>HAGBs</topic><topic>J‐R curve</topic><topic>Metal fatigue</topic><topic>Paris law</topic><topic>Plane stress</topic><topic>Plastic zones</topic><topic>Room temperature</topic><topic>Subzero temperature</topic><topic>Tensile properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>B., Blessto</creatorcontrib><creatorcontrib>Katakam, Sivaprasad</creatorcontrib><creatorcontrib>Veerappan, Muthupandi</creatorcontrib><creatorcontrib>M., Arumugam</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue & fracture of engineering materials & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>B., Blessto</au><au>Katakam, Sivaprasad</au><au>Veerappan, Muthupandi</au><au>M., Arumugam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</atitle><jtitle>Fatigue & fracture of engineering materials & structures</jtitle><date>2020-11</date><risdate>2020</risdate><volume>43</volume><issue>11</issue><spage>2608</spage><epage>2622</epage><pages>2608-2622</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13320</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4358-3659</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 8756-758X |
ispartof | Fatigue & fracture of engineering materials & structures, 2020-11, Vol.43 (11), p.2608-2622 |
issn | 8756-758X 1460-2695 |
language | eng |
recordid | cdi_proquest_journals_2448468134 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | AA2219 Alloys Aluminum base alloys Crack propagation Crack tips cryorolling fatigue crack growth rate Fatigue failure Fracture mechanics Fracture toughness Grain boundaries HAGBs J‐R curve Metal fatigue Paris law Plane stress Plastic zones Room temperature Subzero temperature Tensile properties |
title | Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20crack%20path%20and%20high%20angle%20grain%20boundaries%20on%20fracture%20toughness%20and%20fatigue%20behaviour%20of%20cryorolled%20AA2219&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=B.,%20Blessto&rft.date=2020-11&rft.volume=43&rft.issue=11&rft.spage=2608&rft.epage=2622&rft.pages=2608-2622&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13320&rft_dat=%3Cproquest_cross%3E2448468134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448468134&rft_id=info:pmid/&rfr_iscdi=true |