Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219

AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fatigue & fracture of engineering materials & structures 2020-11, Vol.43 (11), p.2608-2622
Hauptverfasser: B., Blessto, Katakam, Sivaprasad, Veerappan, Muthupandi, M., Arumugam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2622
container_issue 11
container_start_page 2608
container_title Fatigue & fracture of engineering materials & structures
container_volume 43
creator B., Blessto
Katakam, Sivaprasad
Veerappan, Muthupandi
M., Arumugam
description AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.
doi_str_mv 10.1111/ffe.13320
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448468134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448468134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGk9b849lhVLSAhsYDEFjnOOUkJcbETUL89acPKLXfD7717egjdUrKg4yydgwXlnJEzNKNCkoRJnZ6jmcpSmWSper9EVzHuCKFScD5Dw2ZU2B57h20w9gPvTV9j05W4bqrjUbWAq2CaDhd-6EoTGojYd9iNdD8EwL0fqrqDGE8qZ_qmGgAXUJvvxg9hcj744NsWSrxaMUb1Nbpwpo1w87fn6G27eV0_Js8vD0_r1XNimc5IkkqmUptprjItBThinSgywiQ4ZVLLCgBJlTaFhMIK0LJUhXZOZ9RqrTnlc3Q3-e6D_xog9vlujNSNL3MmhBJSUS5G6n6ibPAxBnD5PjSfJhxySvJjq_nYUX5qdWSXE_vTtHD4H8y3282k-AXLP3jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448468134</pqid></control><display><type>article</type><title>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>B., Blessto ; Katakam, Sivaprasad ; Veerappan, Muthupandi ; M., Arumugam</creator><creatorcontrib>B., Blessto ; Katakam, Sivaprasad ; Veerappan, Muthupandi ; M., Arumugam</creatorcontrib><description>AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.</description><identifier>ISSN: 8756-758X</identifier><identifier>EISSN: 1460-2695</identifier><identifier>DOI: 10.1111/ffe.13320</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>AA2219 ; Alloys ; Aluminum base alloys ; Crack propagation ; Crack tips ; cryorolling ; fatigue crack growth rate ; Fatigue failure ; Fracture mechanics ; Fracture toughness ; Grain boundaries ; HAGBs ; J‐R curve ; Metal fatigue ; Paris law ; Plane stress ; Plastic zones ; Room temperature ; Subzero temperature ; Tensile properties</subject><ispartof>Fatigue &amp; fracture of engineering materials &amp; structures, 2020-11, Vol.43 (11), p.2608-2622</ispartof><rights>2020 Wiley Publishing Ltd.</rights><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</citedby><cites>FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</cites><orcidid>0000-0003-4358-3659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fffe.13320$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fffe.13320$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>B., Blessto</creatorcontrib><creatorcontrib>Katakam, Sivaprasad</creatorcontrib><creatorcontrib>Veerappan, Muthupandi</creatorcontrib><creatorcontrib>M., Arumugam</creatorcontrib><title>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</title><title>Fatigue &amp; fracture of engineering materials &amp; structures</title><description>AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.</description><subject>AA2219</subject><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>cryorolling</subject><subject>fatigue crack growth rate</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>Fracture toughness</subject><subject>Grain boundaries</subject><subject>HAGBs</subject><subject>J‐R curve</subject><subject>Metal fatigue</subject><subject>Paris law</subject><subject>Plane stress</subject><subject>Plastic zones</subject><subject>Room temperature</subject><subject>Subzero temperature</subject><subject>Tensile properties</subject><issn>8756-758X</issn><issn>1460-2695</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqUw8A0sMTGk9b849lhVLSAhsYDEFjnOOUkJcbETUL89acPKLXfD7717egjdUrKg4yydgwXlnJEzNKNCkoRJnZ6jmcpSmWSper9EVzHuCKFScD5Dw2ZU2B57h20w9gPvTV9j05W4bqrjUbWAq2CaDhd-6EoTGojYd9iNdD8EwL0fqrqDGE8qZ_qmGgAXUJvvxg9hcj744NsWSrxaMUb1Nbpwpo1w87fn6G27eV0_Js8vD0_r1XNimc5IkkqmUptprjItBThinSgywiQ4ZVLLCgBJlTaFhMIK0LJUhXZOZ9RqrTnlc3Q3-e6D_xog9vlujNSNL3MmhBJSUS5G6n6ibPAxBnD5PjSfJhxySvJjq_nYUX5qdWSXE_vTtHD4H8y3282k-AXLP3jw</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>B., Blessto</creator><creator>Katakam, Sivaprasad</creator><creator>Veerappan, Muthupandi</creator><creator>M., Arumugam</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4358-3659</orcidid></search><sort><creationdate>202011</creationdate><title>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</title><author>B., Blessto ; Katakam, Sivaprasad ; Veerappan, Muthupandi ; M., Arumugam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-56285c79387964ef0cf4b7026ef8a5c2bee6189ab6ebc4e96d8b9ff971c999313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AA2219</topic><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>cryorolling</topic><topic>fatigue crack growth rate</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>Fracture toughness</topic><topic>Grain boundaries</topic><topic>HAGBs</topic><topic>J‐R curve</topic><topic>Metal fatigue</topic><topic>Paris law</topic><topic>Plane stress</topic><topic>Plastic zones</topic><topic>Room temperature</topic><topic>Subzero temperature</topic><topic>Tensile properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>B., Blessto</creatorcontrib><creatorcontrib>Katakam, Sivaprasad</creatorcontrib><creatorcontrib>Veerappan, Muthupandi</creatorcontrib><creatorcontrib>M., Arumugam</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>B., Blessto</au><au>Katakam, Sivaprasad</au><au>Veerappan, Muthupandi</au><au>M., Arumugam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219</atitle><jtitle>Fatigue &amp; fracture of engineering materials &amp; structures</jtitle><date>2020-11</date><risdate>2020</risdate><volume>43</volume><issue>11</issue><spage>2608</spage><epage>2622</epage><pages>2608-2622</pages><issn>8756-758X</issn><eissn>1460-2695</eissn><abstract>AA2219 aerospace alloys in T87 condition were rolled at room temperature and subzero temperature, followed by analysis on its tensile, fracture toughness and fatigue crack growth characteristics. The cryorolled alloy exhibits lower plane stress fracture toughness (50 kJ m−2) than T87 condition (99 kJ m−2) because of higher high angle grain boundaries (HAGBs) which causes an inability to withstand the cyclic deformation. Nevertheless, the cryorolled alloy has shown higher tensile properties and crack growth resistance due to finer grains and large plastic zone size in the crack tip. The unidirectional rolled samples undergo a distinctive zigzag path than the cross‐directional rolled alloy because of deflection from the orderly oriented second phase particles.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ffe.13320</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-4358-3659</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 8756-758X
ispartof Fatigue & fracture of engineering materials & structures, 2020-11, Vol.43 (11), p.2608-2622
issn 8756-758X
1460-2695
language eng
recordid cdi_proquest_journals_2448468134
source Wiley Online Library - AutoHoldings Journals
subjects AA2219
Alloys
Aluminum base alloys
Crack propagation
Crack tips
cryorolling
fatigue crack growth rate
Fatigue failure
Fracture mechanics
Fracture toughness
Grain boundaries
HAGBs
J‐R curve
Metal fatigue
Paris law
Plane stress
Plastic zones
Room temperature
Subzero temperature
Tensile properties
title Effect of crack path and high angle grain boundaries on fracture toughness and fatigue behaviour of cryorolled AA2219
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A42%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20crack%20path%20and%20high%20angle%20grain%20boundaries%20on%20fracture%20toughness%20and%20fatigue%20behaviour%20of%20cryorolled%20AA2219&rft.jtitle=Fatigue%20&%20fracture%20of%20engineering%20materials%20&%20structures&rft.au=B.,%20Blessto&rft.date=2020-11&rft.volume=43&rft.issue=11&rft.spage=2608&rft.epage=2622&rft.pages=2608-2622&rft.issn=8756-758X&rft.eissn=1460-2695&rft_id=info:doi/10.1111/ffe.13320&rft_dat=%3Cproquest_cross%3E2448468134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448468134&rft_id=info:pmid/&rfr_iscdi=true