Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification
Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of th...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5609-5622 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5622 |
---|---|
container_issue | |
container_start_page | 5609 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 13 |
creator | Ding, Yun Chong, Yanwen Pan, Shaoming |
description | Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods. |
doi_str_mv | 10.1109/JSTARS.2020.3023483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448465040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195112</ieee_id><doaj_id>oai_doaj_org_article_f0f5f61a2f6d460f9fafcbb4e2ab1018</doaj_id><sourcerecordid>2448465040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</originalsourceid><addsrcrecordid>eNo9kU9rGzEQxZfQQt20nyAXQc_rzOjPenUMpm3cGgp2So9C0o4Suc5qK20S_O27yYacBh7v92aGV1UXCEtE0Jc_9jdXu_2SA4elAC5kK86qBUeFNSqh3lUL1ELXKEF-qD6WcgBo-EqLRWX2g82FmO07tk1P9c72f9mOhkyF-tGOMfXsTxzv2E86sXXqe_JjfIzjiYWU2fVpoFyGScv2yDb39pbY-mhLiSH6F_hT9T7YY6HPr_O8-v3t6836ut7--r5ZX21rL6Ed65aHTq-ca7XyaIn49EGHTehaEch7hbJbAYLTAaxDbTU4p7yiEDq3ElyL82oz53bJHsyQ473NJ5NsNC9CyrfG5jH6I5kAQYUGLQ9NJxsIOtjgnZPEp2jAdsr6MmcNOf17oDKaQ3rI_XS-4VK2slEgYXKJ2eVzKiVTeNuKYJ5bMXMr5rkV89rKRF3MVCSiN0KjVohc_AcmOYrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448465040</pqid></control><display><type>article</type><title>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ding, Yun ; Chong, Yanwen ; Pan, Shaoming</creator><creatorcontrib>Ding, Yun ; Chong, Yanwen ; Pan, Shaoming</creatorcontrib><description>Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3023483</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive structures ; Algorithms ; Classification ; Classification algorithms ; Connectivity ; Data models ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image classification ; key connectivity ; low-rank representation (LRR) ; Machine learning ; Markov processes ; Probabilistic logic ; Probability theory ; Representations ; Sparse representation (SR)</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5609-5622</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</citedby><cites>FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</cites><orcidid>0000-0002-2749-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ding, Yun</creatorcontrib><creatorcontrib>Chong, Yanwen</creatorcontrib><creatorcontrib>Pan, Shaoming</creatorcontrib><title>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.</description><subject>Adaptation models</subject><subject>Adaptive structures</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Connectivity</subject><subject>Data models</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>key connectivity</subject><subject>low-rank representation (LRR)</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Probabilistic logic</subject><subject>Probability theory</subject><subject>Representations</subject><subject>Sparse representation (SR)</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU9rGzEQxZfQQt20nyAXQc_rzOjPenUMpm3cGgp2So9C0o4Suc5qK20S_O27yYacBh7v92aGV1UXCEtE0Jc_9jdXu_2SA4elAC5kK86qBUeFNSqh3lUL1ELXKEF-qD6WcgBo-EqLRWX2g82FmO07tk1P9c72f9mOhkyF-tGOMfXsTxzv2E86sXXqe_JjfIzjiYWU2fVpoFyGScv2yDb39pbY-mhLiSH6F_hT9T7YY6HPr_O8-v3t6836ut7--r5ZX21rL6Ed65aHTq-ca7XyaIn49EGHTehaEch7hbJbAYLTAaxDbTU4p7yiEDq3ElyL82oz53bJHsyQ473NJ5NsNC9CyrfG5jH6I5kAQYUGLQ9NJxsIOtjgnZPEp2jAdsr6MmcNOf17oDKaQ3rI_XS-4VK2slEgYXKJ2eVzKiVTeNuKYJ5bMXMr5rkV89rKRF3MVCSiN0KjVohc_AcmOYrU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ding, Yun</creator><creator>Chong, Yanwen</creator><creator>Pan, Shaoming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2749-7710</orcidid></search><sort><creationdate>2020</creationdate><title>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</title><author>Ding, Yun ; Chong, Yanwen ; Pan, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive structures</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Connectivity</topic><topic>Data models</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>key connectivity</topic><topic>low-rank representation (LRR)</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Probabilistic logic</topic><topic>Probability theory</topic><topic>Representations</topic><topic>Sparse representation (SR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yun</creatorcontrib><creatorcontrib>Chong, Yanwen</creatorcontrib><creatorcontrib>Pan, Shaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yun</au><au>Chong, Yanwen</au><au>Pan, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5609</spage><epage>5622</epage><pages>5609-5622</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3023483</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2749-7710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5609-5622 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2448465040 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adaptation models Adaptive structures Algorithms Classification Classification algorithms Connectivity Data models hyperspectral image (HSI) Hyperspectral imaging Image classification key connectivity low-rank representation (LRR) Machine learning Markov processes Probabilistic logic Probability theory Representations Sparse representation (SR) |
title | Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20and%20Low-Rank%20Representation%20With%20Key%20Connectivity%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ding,%20Yun&rft.date=2020&rft.volume=13&rft.spage=5609&rft.epage=5622&rft.pages=5609-5622&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3023483&rft_dat=%3Cproquest_cross%3E2448465040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448465040&rft_id=info:pmid/&rft_ieee_id=9195112&rft_doaj_id=oai_doaj_org_article_f0f5f61a2f6d460f9fafcbb4e2ab1018&rfr_iscdi=true |