Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification

Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing 2020, Vol.13, p.5609-5622
Hauptverfasser: Ding, Yun, Chong, Yanwen, Pan, Shaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5622
container_issue
container_start_page 5609
container_title IEEE journal of selected topics in applied earth observations and remote sensing
container_volume 13
creator Ding, Yun
Chong, Yanwen
Pan, Shaoming
description Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.
doi_str_mv 10.1109/JSTARS.2020.3023483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448465040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9195112</ieee_id><doaj_id>oai_doaj_org_article_f0f5f61a2f6d460f9fafcbb4e2ab1018</doaj_id><sourcerecordid>2448465040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</originalsourceid><addsrcrecordid>eNo9kU9rGzEQxZfQQt20nyAXQc_rzOjPenUMpm3cGgp2So9C0o4Suc5qK20S_O27yYacBh7v92aGV1UXCEtE0Jc_9jdXu_2SA4elAC5kK86qBUeFNSqh3lUL1ELXKEF-qD6WcgBo-EqLRWX2g82FmO07tk1P9c72f9mOhkyF-tGOMfXsTxzv2E86sXXqe_JjfIzjiYWU2fVpoFyGScv2yDb39pbY-mhLiSH6F_hT9T7YY6HPr_O8-v3t6836ut7--r5ZX21rL6Ed65aHTq-ca7XyaIn49EGHTehaEch7hbJbAYLTAaxDbTU4p7yiEDq3ElyL82oz53bJHsyQ473NJ5NsNC9CyrfG5jH6I5kAQYUGLQ9NJxsIOtjgnZPEp2jAdsr6MmcNOf17oDKaQ3rI_XS-4VK2slEgYXKJ2eVzKiVTeNuKYJ5bMXMr5rkV89rKRF3MVCSiN0KjVohc_AcmOYrU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448465040</pqid></control><display><type>article</type><title>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ding, Yun ; Chong, Yanwen ; Pan, Shaoming</creator><creatorcontrib>Ding, Yun ; Chong, Yanwen ; Pan, Shaoming</creatorcontrib><description>Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2020.3023483</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive structures ; Algorithms ; Classification ; Classification algorithms ; Connectivity ; Data models ; hyperspectral image (HSI) ; Hyperspectral imaging ; Image classification ; key connectivity ; low-rank representation (LRR) ; Machine learning ; Markov processes ; Probabilistic logic ; Probability theory ; Representations ; Sparse representation (SR)</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5609-5622</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</citedby><cites>FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</cites><orcidid>0000-0002-2749-7710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ding, Yun</creatorcontrib><creatorcontrib>Chong, Yanwen</creatorcontrib><creatorcontrib>Pan, Shaoming</creatorcontrib><title>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.</description><subject>Adaptation models</subject><subject>Adaptive structures</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Connectivity</subject><subject>Data models</subject><subject>hyperspectral image (HSI)</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>key connectivity</subject><subject>low-rank representation (LRR)</subject><subject>Machine learning</subject><subject>Markov processes</subject><subject>Probabilistic logic</subject><subject>Probability theory</subject><subject>Representations</subject><subject>Sparse representation (SR)</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNo9kU9rGzEQxZfQQt20nyAXQc_rzOjPenUMpm3cGgp2So9C0o4Suc5qK20S_O27yYacBh7v92aGV1UXCEtE0Jc_9jdXu_2SA4elAC5kK86qBUeFNSqh3lUL1ELXKEF-qD6WcgBo-EqLRWX2g82FmO07tk1P9c72f9mOhkyF-tGOMfXsTxzv2E86sXXqe_JjfIzjiYWU2fVpoFyGScv2yDb39pbY-mhLiSH6F_hT9T7YY6HPr_O8-v3t6836ut7--r5ZX21rL6Ed65aHTq-ca7XyaIn49EGHTehaEch7hbJbAYLTAaxDbTU4p7yiEDq3ElyL82oz53bJHsyQ473NJ5NsNC9CyrfG5jH6I5kAQYUGLQ9NJxsIOtjgnZPEp2jAdsr6MmcNOf17oDKaQ3rI_XS-4VK2slEgYXKJ2eVzKiVTeNuKYJ5bMXMr5rkV89rKRF3MVCSiN0KjVohc_AcmOYrU</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ding, Yun</creator><creator>Chong, Yanwen</creator><creator>Pan, Shaoming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2749-7710</orcidid></search><sort><creationdate>2020</creationdate><title>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</title><author>Ding, Yun ; Chong, Yanwen ; Pan, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-82fd97bb895c1aee2483d16fd83fecc514d7010b9f0ab19a90bb5c5effdb73293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation models</topic><topic>Adaptive structures</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Connectivity</topic><topic>Data models</topic><topic>hyperspectral image (HSI)</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>key connectivity</topic><topic>low-rank representation (LRR)</topic><topic>Machine learning</topic><topic>Markov processes</topic><topic>Probabilistic logic</topic><topic>Probability theory</topic><topic>Representations</topic><topic>Sparse representation (SR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yun</creatorcontrib><creatorcontrib>Chong, Yanwen</creatorcontrib><creatorcontrib>Pan, Shaoming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yun</au><au>Chong, Yanwen</au><au>Pan, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2020</date><risdate>2020</risdate><volume>13</volume><spage>5609</spage><epage>5622</epage><pages>5609-5622</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Combined techniques of sparse representation (SR) and low-rank representation (LRR) are commonly used for hyperspectral image (HSI) classification. Although they have the ability to capture the interclass representations of data for HSI classification, they ignore the adaptive key connectivity of the learned intraclass data representations in particular with the high-dimensional complex HSI data. It is well-known that the key connectivity of graph-based algorithms is crucial for subspace learning because of the guarantees of its good neighbors. For this purpose, a novel sparse and low-rank representation with key connectivity (SLRC) method is proposed for HSI classification. To be specific, the adaptive probability graph structure is developed to integrate the SR and LRR regularizations to formulate the SLRC model, which flexibly perform discriminative latent subspace construction and preserve the key connectivity of intraclass representations. Then, extensive experiments are executed based on three popular HSI datasets, which demonstrates that the SLRC method outperforms the other popular methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2020.3023483</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2749-7710</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-1404
ispartof IEEE journal of selected topics in applied earth observations and remote sensing, 2020, Vol.13, p.5609-5622
issn 1939-1404
2151-1535
language eng
recordid cdi_proquest_journals_2448465040
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Adaptation models
Adaptive structures
Algorithms
Classification
Classification algorithms
Connectivity
Data models
hyperspectral image (HSI)
Hyperspectral imaging
Image classification
key connectivity
low-rank representation (LRR)
Machine learning
Markov processes
Probabilistic logic
Probability theory
Representations
Sparse representation (SR)
title Sparse and Low-Rank Representation With Key Connectivity for Hyperspectral Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sparse%20and%20Low-Rank%20Representation%20With%20Key%20Connectivity%20for%20Hyperspectral%20Image%20Classification&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Ding,%20Yun&rft.date=2020&rft.volume=13&rft.spage=5609&rft.epage=5622&rft.pages=5609-5622&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2020.3023483&rft_dat=%3Cproquest_cross%3E2448465040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448465040&rft_id=info:pmid/&rft_ieee_id=9195112&rft_doaj_id=oai_doaj_org_article_f0f5f61a2f6d460f9fafcbb4e2ab1018&rfr_iscdi=true