Multiaxial fracture of DP600: Experiments and finite element modeling

The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-05, Vol.785, p.139386, Article 139386
Hauptverfasser: Qin, Shipin, Beese, Allison M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 139386
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 785
creator Qin, Shipin
Beese, Allison M.
description The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.
doi_str_mv 10.1016/j.msea.2020.139386
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448459291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320304676</els_id><sourcerecordid>2448459291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscU6xvXYSIy6olB-pCA5wtlxnjRylSbETVN6eROXMaaXRzO7sR8glZwvOeH5dL7YJ7UIwMQqgocyPyIyXBWRSQ35MZkwLnimm4ZScpVQzxrhkakZWL0PTB7sPtqE-WtcPEWnn6f1bztgNXe13GMMW2z5R21bUhzb0SLHBSaPbrsImtJ_n5MTbJuHF35yTj4fV-_IpW78-Pi_v1pmDQvRjlwqUB1FKKLGEjRNaVkKLwivLoQKhZIWFFg7yTcE3FjTXSgmtPHMgrIc5uTrs3cXua8DUm7obYjueNELKUiotNB9d4uBysUspoje78QcbfwxnZsJlajPhMhMuc8A1hm4PIRz7fweMJrmArcMqRHS9qbrwX_wXXYZxKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448459291</pqid></control><display><type>article</type><title>Multiaxial fracture of DP600: Experiments and finite element modeling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qin, Shipin ; Beese, Allison M.</creator><creatorcontrib>Qin, Shipin ; Beese, Allison M.</creatorcontrib><description>The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139386</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Advanced high strength steel ; Axial stress ; Calibration ; Computer simulation ; Crack initiation ; Dual phase (DP) steel ; Duplex stainless steels ; Finite element method ; Fracture mechanics ; Mathematical models ; Mohr-Coulomb theory ; Multiaxial fracture ; Plastic deformation ; Strain ; Stress state</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2020-05, Vol.785, p.139386, Article 139386</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 21, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</citedby><cites>FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.139386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Qin, Shipin</creatorcontrib><creatorcontrib>Beese, Allison M.</creatorcontrib><title>Multiaxial fracture of DP600: Experiments and finite element modeling</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.</description><subject>Advanced high strength steel</subject><subject>Axial stress</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Crack initiation</subject><subject>Dual phase (DP) steel</subject><subject>Duplex stainless steels</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Mathematical models</subject><subject>Mohr-Coulomb theory</subject><subject>Multiaxial fracture</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>Stress state</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscU6xvXYSIy6olB-pCA5wtlxnjRylSbETVN6eROXMaaXRzO7sR8glZwvOeH5dL7YJ7UIwMQqgocyPyIyXBWRSQ35MZkwLnimm4ZScpVQzxrhkakZWL0PTB7sPtqE-WtcPEWnn6f1bztgNXe13GMMW2z5R21bUhzb0SLHBSaPbrsImtJ_n5MTbJuHF35yTj4fV-_IpW78-Pi_v1pmDQvRjlwqUB1FKKLGEjRNaVkKLwivLoQKhZIWFFg7yTcE3FjTXSgmtPHMgrIc5uTrs3cXua8DUm7obYjueNELKUiotNB9d4uBysUspoje78QcbfwxnZsJlajPhMhMuc8A1hm4PIRz7fweMJrmArcMqRHS9qbrwX_wXXYZxKw</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Qin, Shipin</creator><creator>Beese, Allison M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200521</creationdate><title>Multiaxial fracture of DP600: Experiments and finite element modeling</title><author>Qin, Shipin ; Beese, Allison M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced high strength steel</topic><topic>Axial stress</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Crack initiation</topic><topic>Dual phase (DP) steel</topic><topic>Duplex stainless steels</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Mathematical models</topic><topic>Mohr-Coulomb theory</topic><topic>Multiaxial fracture</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>Stress state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Shipin</creatorcontrib><creatorcontrib>Beese, Allison M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Shipin</au><au>Beese, Allison M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiaxial fracture of DP600: Experiments and finite element modeling</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>785</volume><spage>139386</spage><pages>139386-</pages><artnum>139386</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139386</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-05, Vol.785, p.139386, Article 139386
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2448459291
source ScienceDirect Journals (5 years ago - present)
subjects Advanced high strength steel
Axial stress
Calibration
Computer simulation
Crack initiation
Dual phase (DP) steel
Duplex stainless steels
Finite element method
Fracture mechanics
Mathematical models
Mohr-Coulomb theory
Multiaxial fracture
Plastic deformation
Strain
Stress state
title Multiaxial fracture of DP600: Experiments and finite element modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiaxial%20fracture%20of%20DP600:%20Experiments%20and%20finite%20element%20modeling&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Qin,%20Shipin&rft.date=2020-05-21&rft.volume=785&rft.spage=139386&rft.pages=139386-&rft.artnum=139386&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139386&rft_dat=%3Cproquest_cross%3E2448459291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448459291&rft_id=info:pmid/&rft_els_id=S0921509320304676&rfr_iscdi=true