Multiaxial fracture of DP600: Experiments and finite element modeling
The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2020-05, Vol.785, p.139386, Article 139386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 139386 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 785 |
creator | Qin, Shipin Beese, Allison M. |
description | The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material. |
doi_str_mv | 10.1016/j.msea.2020.139386 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448459291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509320304676</els_id><sourcerecordid>2448459291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwApwscU6xvXYSIy6olB-pCA5wtlxnjRylSbETVN6eROXMaaXRzO7sR8glZwvOeH5dL7YJ7UIwMQqgocyPyIyXBWRSQ35MZkwLnimm4ZScpVQzxrhkakZWL0PTB7sPtqE-WtcPEWnn6f1bztgNXe13GMMW2z5R21bUhzb0SLHBSaPbrsImtJ_n5MTbJuHF35yTj4fV-_IpW78-Pi_v1pmDQvRjlwqUB1FKKLGEjRNaVkKLwivLoQKhZIWFFg7yTcE3FjTXSgmtPHMgrIc5uTrs3cXua8DUm7obYjueNELKUiotNB9d4uBysUspoje78QcbfwxnZsJlajPhMhMuc8A1hm4PIRz7fweMJrmArcMqRHS9qbrwX_wXXYZxKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448459291</pqid></control><display><type>article</type><title>Multiaxial fracture of DP600: Experiments and finite element modeling</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Qin, Shipin ; Beese, Allison M.</creator><creatorcontrib>Qin, Shipin ; Beese, Allison M.</creatorcontrib><description>The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2020.139386</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Advanced high strength steel ; Axial stress ; Calibration ; Computer simulation ; Crack initiation ; Dual phase (DP) steel ; Duplex stainless steels ; Finite element method ; Fracture mechanics ; Mathematical models ; Mohr-Coulomb theory ; Multiaxial fracture ; Plastic deformation ; Strain ; Stress state</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-05, Vol.785, p.139386, Article 139386</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 21, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</citedby><cites>FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2020.139386$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Qin, Shipin</creatorcontrib><creatorcontrib>Beese, Allison M.</creatorcontrib><title>Multiaxial fracture of DP600: Experiments and finite element modeling</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.</description><subject>Advanced high strength steel</subject><subject>Axial stress</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Crack initiation</subject><subject>Dual phase (DP) steel</subject><subject>Duplex stainless steels</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Mathematical models</subject><subject>Mohr-Coulomb theory</subject><subject>Multiaxial fracture</subject><subject>Plastic deformation</subject><subject>Strain</subject><subject>Stress state</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwApwscU6xvXYSIy6olB-pCA5wtlxnjRylSbETVN6eROXMaaXRzO7sR8glZwvOeH5dL7YJ7UIwMQqgocyPyIyXBWRSQ35MZkwLnimm4ZScpVQzxrhkakZWL0PTB7sPtqE-WtcPEWnn6f1bztgNXe13GMMW2z5R21bUhzb0SLHBSaPbrsImtJ_n5MTbJuHF35yTj4fV-_IpW78-Pi_v1pmDQvRjlwqUB1FKKLGEjRNaVkKLwivLoQKhZIWFFg7yTcE3FjTXSgmtPHMgrIc5uTrs3cXua8DUm7obYjueNELKUiotNB9d4uBysUspoje78QcbfwxnZsJlajPhMhMuc8A1hm4PIRz7fweMJrmArcMqRHS9qbrwX_wXXYZxKw</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Qin, Shipin</creator><creator>Beese, Allison M.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20200521</creationdate><title>Multiaxial fracture of DP600: Experiments and finite element modeling</title><author>Qin, Shipin ; Beese, Allison M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-49d35f328438e83bc294d2927f5a13d3254de792c36b71ba391955295f0c32af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced high strength steel</topic><topic>Axial stress</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Crack initiation</topic><topic>Dual phase (DP) steel</topic><topic>Duplex stainless steels</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Mathematical models</topic><topic>Mohr-Coulomb theory</topic><topic>Multiaxial fracture</topic><topic>Plastic deformation</topic><topic>Strain</topic><topic>Stress state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Shipin</creatorcontrib><creatorcontrib>Beese, Allison M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Shipin</au><au>Beese, Allison M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiaxial fracture of DP600: Experiments and finite element modeling</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2020-05-21</date><risdate>2020</risdate><volume>785</volume><spage>139386</spage><pages>139386-</pages><artnum>139386</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The stress state dependent fracture behavior of DP600 steel at the continuum level was investigated through a combined experimental and computational approach. A range of specimen geometries were used to probe the fracture behavior of the material under different stress states. Using an isotropic J2 plasticity framework, finite element simulations of all experiments captured the experimental force displacement curves, and provided information on the evolution of equivalent plastic strain, stress triaxiality, and Lode angle parameter with applied deformation at the location of eventual fracture initiation. The calculated local failure strain as a function of stress state was used to calibrate the modified Mohr-Coulomb (MMC) fracture model. A comparison of the calibrated MMC model with previously reported results in literature highlights the importance of calibrating the fracture model over a wide stress state range to fully and accurately describe the fracture behavior of the material.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2020.139386</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2020-05, Vol.785, p.139386, Article 139386 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2448459291 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Advanced high strength steel Axial stress Calibration Computer simulation Crack initiation Dual phase (DP) steel Duplex stainless steels Finite element method Fracture mechanics Mathematical models Mohr-Coulomb theory Multiaxial fracture Plastic deformation Strain Stress state |
title | Multiaxial fracture of DP600: Experiments and finite element modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A19%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiaxial%20fracture%20of%20DP600:%20Experiments%20and%20finite%20element%20modeling&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Qin,%20Shipin&rft.date=2020-05-21&rft.volume=785&rft.spage=139386&rft.pages=139386-&rft.artnum=139386&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2020.139386&rft_dat=%3Cproquest_cross%3E2448459291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448459291&rft_id=info:pmid/&rft_els_id=S0921509320304676&rfr_iscdi=true |