Energy-Optimal Speed Trajectories Between Stops
This paper presents energy-optimal speed trajectories between stops for electric vehicles. It is shown that if basic infrastructure and traffic flow information is available, energy savings of up to 60% are possible, with 20-40% being typical values. The optimization approach uses a cost function th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2020-10, Vol.21 (10), p.4328-4337 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4337 |
---|---|
container_issue | 10 |
container_start_page | 4328 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 21 |
creator | Mello, Eduardo F. Bauer, Peter H. |
description | This paper presents energy-optimal speed trajectories between stops for electric vehicles. It is shown that if basic infrastructure and traffic flow information is available, energy savings of up to 60% are possible, with 20-40% being typical values. The optimization approach uses a cost function that contains only transportation energy and uses all other conditions (such as maximum acceleration, average speed, etc.) as constraints. Real-world considerations such as following distance to the next vehicle and jerk constraints are also analyzed. The overall impact of this approach includes the reduction of energy cost, grid power demand, power plant emissions, global warming, as well as an increase in the range of electric vehicles. |
doi_str_mv | 10.1109/TITS.2019.2939776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2448452256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8844786</ieee_id><sourcerecordid>2448452256</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-12366c51a2a1481d2ad3871a17c62d68803dada7d5cafc976b68d3b371afe5ff3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN42k-89aqlaKPTQ9RzSZFZaandNtkj_vVlaPM0wPO8M8xDyCHQCQKtpvajXE0ahmrCKV1qrKzICKU1JKajroWeirKikt-QupV2eCgkwItP5AePXqVx1_fbb7Yt1hxiKOrod-r6NW0zFK_a_iIdi3bdduic3jdsnfLjUMfl8m9ezj3K5el_MXpalz_f7EhhXyktwzIEwEJgL3GhwoL1iQRlDeXDB6SC9a3yl1UaZwDc8Iw3KpuFj8nze28X254ipt7v2GA_5pGVCGCEZkypTcKZ8bFOK2Ngu5jfiyQK1gxc7eLGDF3vxkjNP58wWEf95Y4TQRvE_5YRdtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448452256</pqid></control><display><type>article</type><title>Energy-Optimal Speed Trajectories Between Stops</title><source>IEEE Electronic Library (IEL)</source><creator>Mello, Eduardo F. ; Bauer, Peter H.</creator><creatorcontrib>Mello, Eduardo F. ; Bauer, Peter H.</creatorcontrib><description>This paper presents energy-optimal speed trajectories between stops for electric vehicles. It is shown that if basic infrastructure and traffic flow information is available, energy savings of up to 60% are possible, with 20-40% being typical values. The optimization approach uses a cost function that contains only transportation energy and uses all other conditions (such as maximum acceleration, average speed, etc.) as constraints. Real-world considerations such as following distance to the next vehicle and jerk constraints are also analyzed. The overall impact of this approach includes the reduction of energy cost, grid power demand, power plant emissions, global warming, as well as an increase in the range of electric vehicles.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2939776</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Batteries ; Cost control ; Cost function ; electric vehicle ; Electric vehicles ; Energy costs ; Energy efficiency ; Global warming ; Impact analysis ; optimal ; Optimization ; Resistance ; speed profile ; Traffic flow ; Traffic information ; Trajectories ; Trajectory ; Transportation energy</subject><ispartof>IEEE transactions on intelligent transportation systems, 2020-10, Vol.21 (10), p.4328-4337</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-12366c51a2a1481d2ad3871a17c62d68803dada7d5cafc976b68d3b371afe5ff3</citedby><cites>FETCH-LOGICAL-c293t-12366c51a2a1481d2ad3871a17c62d68803dada7d5cafc976b68d3b371afe5ff3</cites><orcidid>0000-0002-2339-2305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8844786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8844786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mello, Eduardo F.</creatorcontrib><creatorcontrib>Bauer, Peter H.</creatorcontrib><title>Energy-Optimal Speed Trajectories Between Stops</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper presents energy-optimal speed trajectories between stops for electric vehicles. It is shown that if basic infrastructure and traffic flow information is available, energy savings of up to 60% are possible, with 20-40% being typical values. The optimization approach uses a cost function that contains only transportation energy and uses all other conditions (such as maximum acceleration, average speed, etc.) as constraints. Real-world considerations such as following distance to the next vehicle and jerk constraints are also analyzed. The overall impact of this approach includes the reduction of energy cost, grid power demand, power plant emissions, global warming, as well as an increase in the range of electric vehicles.</description><subject>Acceleration</subject><subject>Batteries</subject><subject>Cost control</subject><subject>Cost function</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Global warming</subject><subject>Impact analysis</subject><subject>optimal</subject><subject>Optimization</subject><subject>Resistance</subject><subject>speed profile</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Transportation energy</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN42k-89aqlaKPTQ9RzSZFZaandNtkj_vVlaPM0wPO8M8xDyCHQCQKtpvajXE0ahmrCKV1qrKzICKU1JKajroWeirKikt-QupV2eCgkwItP5AePXqVx1_fbb7Yt1hxiKOrod-r6NW0zFK_a_iIdi3bdduic3jdsnfLjUMfl8m9ezj3K5el_MXpalz_f7EhhXyktwzIEwEJgL3GhwoL1iQRlDeXDB6SC9a3yl1UaZwDc8Iw3KpuFj8nze28X254ipt7v2GA_5pGVCGCEZkypTcKZ8bFOK2Ngu5jfiyQK1gxc7eLGDF3vxkjNP58wWEf95Y4TQRvE_5YRdtw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Mello, Eduardo F.</creator><creator>Bauer, Peter H.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2339-2305</orcidid></search><sort><creationdate>20201001</creationdate><title>Energy-Optimal Speed Trajectories Between Stops</title><author>Mello, Eduardo F. ; Bauer, Peter H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-12366c51a2a1481d2ad3871a17c62d68803dada7d5cafc976b68d3b371afe5ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Batteries</topic><topic>Cost control</topic><topic>Cost function</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Global warming</topic><topic>Impact analysis</topic><topic>optimal</topic><topic>Optimization</topic><topic>Resistance</topic><topic>speed profile</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Transportation energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mello, Eduardo F.</creatorcontrib><creatorcontrib>Bauer, Peter H.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mello, Eduardo F.</au><au>Bauer, Peter H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Optimal Speed Trajectories Between Stops</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>21</volume><issue>10</issue><spage>4328</spage><epage>4337</epage><pages>4328-4337</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper presents energy-optimal speed trajectories between stops for electric vehicles. It is shown that if basic infrastructure and traffic flow information is available, energy savings of up to 60% are possible, with 20-40% being typical values. The optimization approach uses a cost function that contains only transportation energy and uses all other conditions (such as maximum acceleration, average speed, etc.) as constraints. Real-world considerations such as following distance to the next vehicle and jerk constraints are also analyzed. The overall impact of this approach includes the reduction of energy cost, grid power demand, power plant emissions, global warming, as well as an increase in the range of electric vehicles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2939776</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2339-2305</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2020-10, Vol.21 (10), p.4328-4337 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2448452256 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Batteries Cost control Cost function electric vehicle Electric vehicles Energy costs Energy efficiency Global warming Impact analysis optimal Optimization Resistance speed profile Traffic flow Traffic information Trajectories Trajectory Transportation energy |
title | Energy-Optimal Speed Trajectories Between Stops |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Optimal%20Speed%20Trajectories%20Between%20Stops&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Mello,%20Eduardo%20F.&rft.date=2020-10-01&rft.volume=21&rft.issue=10&rft.spage=4328&rft.epage=4337&rft.pages=4328-4337&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2939776&rft_dat=%3Cproquest_RIE%3E2448452256%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448452256&rft_id=info:pmid/&rft_ieee_id=8844786&rfr_iscdi=true |