Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean
The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscil...
Gespeichert in:
Veröffentlicht in: | Fisheries oceanography 2020-11, Vol.29 (6), p.572-583 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | 6 |
container_start_page | 572 |
container_title | Fisheries oceanography |
container_volume | 29 |
creator | Báez, José Carlos Czerwinski, Ivone A. Ramos, María Lourdes |
description | The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance. |
doi_str_mv | 10.1111/fog.12496 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448280586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448280586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWWOiQ1nZiJxlRRUulSh0os-U4x9Ql2CFOVPXtMYSVs5yLvnP7EbqnZE6jLYx_n1OWleICTWgqeMIyWl7GmPAsEYSIa3QTwpEQmqd5PkEfy8Z-qt5q7IO2TRND7wIGY0D32DvcHwCfoWn8ydiYDU7hx_1hcG4IWDWV0qqDMMOvrXI2HLBWbT_ECrZj68bVVjm806DcLboyqglw9-en6G31vF--JNvderN82iY6TZlIKsGBKl6lhGYkHlobaiDXXGmT1ozV8U1gOZS8rIAxURUMUgWiAhAiN7xIp-hhnNt2_muA0MujHzoXV0qWZQUrCC9EpGYjpTsfQgdGtl2UojtLSuSPljJqKX-1jOxiZE-2gfP_oFzt1mPHNzSXdkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448280586</pqid></control><display><type>article</type><title>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</title><source>Wiley Journals</source><creator>Báez, José Carlos ; Czerwinski, Ivone A. ; Ramos, María Lourdes</creator><creatorcontrib>Báez, José Carlos ; Czerwinski, Ivone A. ; Ramos, María Lourdes</creatorcontrib><description>The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.</description><identifier>ISSN: 1054-6006</identifier><identifier>EISSN: 1365-2419</identifier><identifier>DOI: 10.1111/fog.12496</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Abundance ; Additives ; Climate effects ; climatic oscillation ; Dipoles ; Fishing ; Fishing fleets ; Indian Ocean ; IOD ; Madden-Julian oscillation ; MJO ; Oceans ; Oscillations ; PDO ; Purse seines ; Sea surface ; Seasonal variations ; SOI ; Spawning ; Survival ; Thunnus albacares ; Time lag ; Tropical climate ; Tuna ; yellowfin tuna</subject><ispartof>Fisheries oceanography, 2020-11, Vol.29 (6), p.572-583</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</citedby><cites>FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</cites><orcidid>0000-0003-2049-0409 ; 0000-0001-8722-5285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffog.12496$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffog.12496$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Báez, José Carlos</creatorcontrib><creatorcontrib>Czerwinski, Ivone A.</creatorcontrib><creatorcontrib>Ramos, María Lourdes</creatorcontrib><title>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</title><title>Fisheries oceanography</title><description>The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.</description><subject>Abundance</subject><subject>Additives</subject><subject>Climate effects</subject><subject>climatic oscillation</subject><subject>Dipoles</subject><subject>Fishing</subject><subject>Fishing fleets</subject><subject>Indian Ocean</subject><subject>IOD</subject><subject>Madden-Julian oscillation</subject><subject>MJO</subject><subject>Oceans</subject><subject>Oscillations</subject><subject>PDO</subject><subject>Purse seines</subject><subject>Sea surface</subject><subject>Seasonal variations</subject><subject>SOI</subject><subject>Spawning</subject><subject>Survival</subject><subject>Thunnus albacares</subject><subject>Time lag</subject><subject>Tropical climate</subject><subject>Tuna</subject><subject>yellowfin tuna</subject><issn>1054-6006</issn><issn>1365-2419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUw8AaWWOiQ1nZiJxlRRUulSh0os-U4x9Ql2CFOVPXtMYSVs5yLvnP7EbqnZE6jLYx_n1OWleICTWgqeMIyWl7GmPAsEYSIa3QTwpEQmqd5PkEfy8Z-qt5q7IO2TRND7wIGY0D32DvcHwCfoWn8ydiYDU7hx_1hcG4IWDWV0qqDMMOvrXI2HLBWbT_ECrZj68bVVjm806DcLboyqglw9-en6G31vF--JNvderN82iY6TZlIKsGBKl6lhGYkHlobaiDXXGmT1ozV8U1gOZS8rIAxURUMUgWiAhAiN7xIp-hhnNt2_muA0MujHzoXV0qWZQUrCC9EpGYjpTsfQgdGtl2UojtLSuSPljJqKX-1jOxiZE-2gfP_oFzt1mPHNzSXdkM</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Báez, José Carlos</creator><creator>Czerwinski, Ivone A.</creator><creator>Ramos, María Lourdes</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-2049-0409</orcidid><orcidid>https://orcid.org/0000-0001-8722-5285</orcidid></search><sort><creationdate>202011</creationdate><title>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</title><author>Báez, José Carlos ; Czerwinski, Ivone A. ; Ramos, María Lourdes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Additives</topic><topic>Climate effects</topic><topic>climatic oscillation</topic><topic>Dipoles</topic><topic>Fishing</topic><topic>Fishing fleets</topic><topic>Indian Ocean</topic><topic>IOD</topic><topic>Madden-Julian oscillation</topic><topic>MJO</topic><topic>Oceans</topic><topic>Oscillations</topic><topic>PDO</topic><topic>Purse seines</topic><topic>Sea surface</topic><topic>Seasonal variations</topic><topic>SOI</topic><topic>Spawning</topic><topic>Survival</topic><topic>Thunnus albacares</topic><topic>Time lag</topic><topic>Tropical climate</topic><topic>Tuna</topic><topic>yellowfin tuna</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Báez, José Carlos</creatorcontrib><creatorcontrib>Czerwinski, Ivone A.</creatorcontrib><creatorcontrib>Ramos, María Lourdes</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fisheries oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Báez, José Carlos</au><au>Czerwinski, Ivone A.</au><au>Ramos, María Lourdes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</atitle><jtitle>Fisheries oceanography</jtitle><date>2020-11</date><risdate>2020</risdate><volume>29</volume><issue>6</issue><spage>572</spage><epage>583</epage><pages>572-583</pages><issn>1054-6006</issn><eissn>1365-2419</eissn><abstract>The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/fog.12496</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2049-0409</orcidid><orcidid>https://orcid.org/0000-0001-8722-5285</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6006 |
ispartof | Fisheries oceanography, 2020-11, Vol.29 (6), p.572-583 |
issn | 1054-6006 1365-2419 |
language | eng |
recordid | cdi_proquest_journals_2448280586 |
source | Wiley Journals |
subjects | Abundance Additives Climate effects climatic oscillation Dipoles Fishing Fishing fleets Indian Ocean IOD Madden-Julian oscillation MJO Oceans Oscillations PDO Purse seines Sea surface Seasonal variations SOI Spawning Survival Thunnus albacares Time lag Tropical climate Tuna yellowfin tuna |
title | Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatic%20oscillations%20effect%20on%20the%20yellowfin%20tuna%20(Thunnus%20albacares)%20Spanish%20captures%20in%20the%20Indian%20Ocean&rft.jtitle=Fisheries%20oceanography&rft.au=B%C3%A1ez,%20Jos%C3%A9%20Carlos&rft.date=2020-11&rft.volume=29&rft.issue=6&rft.spage=572&rft.epage=583&rft.pages=572-583&rft.issn=1054-6006&rft.eissn=1365-2419&rft_id=info:doi/10.1111/fog.12496&rft_dat=%3Cproquest_cross%3E2448280586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448280586&rft_id=info:pmid/&rfr_iscdi=true |