Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean

The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fisheries oceanography 2020-11, Vol.29 (6), p.572-583
Hauptverfasser: Báez, José Carlos, Czerwinski, Ivone A., Ramos, María Lourdes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 583
container_issue 6
container_start_page 572
container_title Fisheries oceanography
container_volume 29
creator Báez, José Carlos
Czerwinski, Ivone A.
Ramos, María Lourdes
description The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.
doi_str_mv 10.1111/fog.12496
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448280586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448280586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWWOiQ1nZiJxlRRUulSh0os-U4x9Ql2CFOVPXtMYSVs5yLvnP7EbqnZE6jLYx_n1OWleICTWgqeMIyWl7GmPAsEYSIa3QTwpEQmqd5PkEfy8Z-qt5q7IO2TRND7wIGY0D32DvcHwCfoWn8ydiYDU7hx_1hcG4IWDWV0qqDMMOvrXI2HLBWbT_ECrZj68bVVjm806DcLboyqglw9-en6G31vF--JNvderN82iY6TZlIKsGBKl6lhGYkHlobaiDXXGmT1ozV8U1gOZS8rIAxURUMUgWiAhAiN7xIp-hhnNt2_muA0MujHzoXV0qWZQUrCC9EpGYjpTsfQgdGtl2UojtLSuSPljJqKX-1jOxiZE-2gfP_oFzt1mPHNzSXdkM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448280586</pqid></control><display><type>article</type><title>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</title><source>Wiley Journals</source><creator>Báez, José Carlos ; Czerwinski, Ivone A. ; Ramos, María Lourdes</creator><creatorcontrib>Báez, José Carlos ; Czerwinski, Ivone A. ; Ramos, María Lourdes</creatorcontrib><description>The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.</description><identifier>ISSN: 1054-6006</identifier><identifier>EISSN: 1365-2419</identifier><identifier>DOI: 10.1111/fog.12496</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Abundance ; Additives ; Climate effects ; climatic oscillation ; Dipoles ; Fishing ; Fishing fleets ; Indian Ocean ; IOD ; Madden-Julian oscillation ; MJO ; Oceans ; Oscillations ; PDO ; Purse seines ; Sea surface ; Seasonal variations ; SOI ; Spawning ; Survival ; Thunnus albacares ; Time lag ; Tropical climate ; Tuna ; yellowfin tuna</subject><ispartof>Fisheries oceanography, 2020-11, Vol.29 (6), p.572-583</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</citedby><cites>FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</cites><orcidid>0000-0003-2049-0409 ; 0000-0001-8722-5285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ffog.12496$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ffog.12496$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Báez, José Carlos</creatorcontrib><creatorcontrib>Czerwinski, Ivone A.</creatorcontrib><creatorcontrib>Ramos, María Lourdes</creatorcontrib><title>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</title><title>Fisheries oceanography</title><description>The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.</description><subject>Abundance</subject><subject>Additives</subject><subject>Climate effects</subject><subject>climatic oscillation</subject><subject>Dipoles</subject><subject>Fishing</subject><subject>Fishing fleets</subject><subject>Indian Ocean</subject><subject>IOD</subject><subject>Madden-Julian oscillation</subject><subject>MJO</subject><subject>Oceans</subject><subject>Oscillations</subject><subject>PDO</subject><subject>Purse seines</subject><subject>Sea surface</subject><subject>Seasonal variations</subject><subject>SOI</subject><subject>Spawning</subject><subject>Survival</subject><subject>Thunnus albacares</subject><subject>Time lag</subject><subject>Tropical climate</subject><subject>Tuna</subject><subject>yellowfin tuna</subject><issn>1054-6006</issn><issn>1365-2419</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUw8AaWWOiQ1nZiJxlRRUulSh0os-U4x9Ql2CFOVPXtMYSVs5yLvnP7EbqnZE6jLYx_n1OWleICTWgqeMIyWl7GmPAsEYSIa3QTwpEQmqd5PkEfy8Z-qt5q7IO2TRND7wIGY0D32DvcHwCfoWn8ydiYDU7hx_1hcG4IWDWV0qqDMMOvrXI2HLBWbT_ECrZj68bVVjm806DcLboyqglw9-en6G31vF--JNvderN82iY6TZlIKsGBKl6lhGYkHlobaiDXXGmT1ozV8U1gOZS8rIAxURUMUgWiAhAiN7xIp-hhnNt2_muA0MujHzoXV0qWZQUrCC9EpGYjpTsfQgdGtl2UojtLSuSPljJqKX-1jOxiZE-2gfP_oFzt1mPHNzSXdkM</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Báez, José Carlos</creator><creator>Czerwinski, Ivone A.</creator><creator>Ramos, María Lourdes</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-2049-0409</orcidid><orcidid>https://orcid.org/0000-0001-8722-5285</orcidid></search><sort><creationdate>202011</creationdate><title>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</title><author>Báez, José Carlos ; Czerwinski, Ivone A. ; Ramos, María Lourdes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-b65e1a5b30140001df1fe7c5acf3d22d111e27e959be226b82e3ae6bee667f583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abundance</topic><topic>Additives</topic><topic>Climate effects</topic><topic>climatic oscillation</topic><topic>Dipoles</topic><topic>Fishing</topic><topic>Fishing fleets</topic><topic>Indian Ocean</topic><topic>IOD</topic><topic>Madden-Julian oscillation</topic><topic>MJO</topic><topic>Oceans</topic><topic>Oscillations</topic><topic>PDO</topic><topic>Purse seines</topic><topic>Sea surface</topic><topic>Seasonal variations</topic><topic>SOI</topic><topic>Spawning</topic><topic>Survival</topic><topic>Thunnus albacares</topic><topic>Time lag</topic><topic>Tropical climate</topic><topic>Tuna</topic><topic>yellowfin tuna</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Báez, José Carlos</creatorcontrib><creatorcontrib>Czerwinski, Ivone A.</creatorcontrib><creatorcontrib>Ramos, María Lourdes</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fisheries oceanography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Báez, José Carlos</au><au>Czerwinski, Ivone A.</au><au>Ramos, María Lourdes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean</atitle><jtitle>Fisheries oceanography</jtitle><date>2020-11</date><risdate>2020</risdate><volume>29</volume><issue>6</issue><spage>572</spage><epage>583</epage><pages>572-583</pages><issn>1054-6006</issn><eissn>1365-2419</eissn><abstract>The yellowfin tuna (Thunnus albacares) (YFT) is among the eight marine species with the highest catches globally. The Spanish purse seine freezer fleet operating in the Indian Ocean is one of the most important YFT fishing fleets in the world. The South Oscillation Index (SOI), Pacific Decadal Oscillation (PDO), and Indian Ocean Dipole (IOD) are interrelated, and have combined effects in the Indian Ocean. Moreover, Madden–Julian Oscillation (MJO) is the dominant component of intraseasonal variability in the tropical Indian and Pacific oceans where the sea surface is warm. The main aim of present study is to understand the effect of these four climatic oscillations on Spanish purse seine YFT catches in the Indian Ocean. The ultimate goal is to estimate the specific time lag of the effect of each climatic oscillation on the YFT catches for management purposes. To estimate this, we adjusted different General Additive Models between the response variable (corrected YFT catches per unit of effort per year), compared to a combination of SOI, PDO, IOD, and MJO lagged up to 8 years. Our results suggest that there is a lagged effect modulated mainly by PDO‐SOI, which could be related to a good recruitment, larval survival, or improved spawning. Thus, negative PDO phase (or positive SOI phase) lagged between 3 and 6 years could favor future stock abundance, while positive PDO phase (or negative SOI phase) lagged 3 or 6 years could negatively affect future stock abundance.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/fog.12496</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2049-0409</orcidid><orcidid>https://orcid.org/0000-0001-8722-5285</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-6006
ispartof Fisheries oceanography, 2020-11, Vol.29 (6), p.572-583
issn 1054-6006
1365-2419
language eng
recordid cdi_proquest_journals_2448280586
source Wiley Journals
subjects Abundance
Additives
Climate effects
climatic oscillation
Dipoles
Fishing
Fishing fleets
Indian Ocean
IOD
Madden-Julian oscillation
MJO
Oceans
Oscillations
PDO
Purse seines
Sea surface
Seasonal variations
SOI
Spawning
Survival
Thunnus albacares
Time lag
Tropical climate
Tuna
yellowfin tuna
title Climatic oscillations effect on the yellowfin tuna (Thunnus albacares) Spanish captures in the Indian Ocean
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A10%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climatic%20oscillations%20effect%20on%20the%20yellowfin%20tuna%20(Thunnus%20albacares)%20Spanish%20captures%20in%20the%20Indian%20Ocean&rft.jtitle=Fisheries%20oceanography&rft.au=B%C3%A1ez,%20Jos%C3%A9%20Carlos&rft.date=2020-11&rft.volume=29&rft.issue=6&rft.spage=572&rft.epage=583&rft.pages=572-583&rft.issn=1054-6006&rft.eissn=1365-2419&rft_id=info:doi/10.1111/fog.12496&rft_dat=%3Cproquest_cross%3E2448280586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448280586&rft_id=info:pmid/&rfr_iscdi=true