Improved ORB-SLAM2 Algorithm Based on Information Entropy and Image Sharpening Adjustment

Simultaneous Localization and Mapping (SLAM) has become a research hotspot in the field of robots in recent years. However, most visual SLAM systems are based on static assumptions which ignored motion effects. If image sequences are not rich in texture information or the camera rotates at a large a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Yin, Dan, Zhou, Siwei, Wang, Pengcheng, Lin, Manling, Luo, Kaiqing, Zhang, Haolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Yin, Dan
Zhou, Siwei
Wang, Pengcheng
Lin, Manling
Luo, Kaiqing
Zhang, Haolan
description Simultaneous Localization and Mapping (SLAM) has become a research hotspot in the field of robots in recent years. However, most visual SLAM systems are based on static assumptions which ignored motion effects. If image sequences are not rich in texture information or the camera rotates at a large angle, SLAM system will fail to locate and map. To solve these problems, this paper proposes an improved ORB-SLAM2 algorithm based on information entropy and sharpening processing. The information entropy corresponding to the segmented image block is calculated, and the entropy threshold is determined by the adaptive algorithm of image entropy threshold, and then the image block which is smaller than the information entropy threshold is sharpened. The experimental results show that compared with the ORB-SLAM2 system, the relative trajectory error decreases by 36.1% and the absolute trajectory error decreases by 45.1% compared with ORB-SLAM2. Although these indicators are greatly improved, the processing time is not greatly increased. To some extent, the algorithm solves the problem of system localization and mapping failure caused by camera large angle rotation and insufficient image texture information.
doi_str_mv 10.1155/2020/4724310
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448260986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448260986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-e766320e91f44d2c5b12880e2680c6d27773a9d2691c7f63777c02cb41560f613</originalsourceid><addsrcrecordid>eNqF0EFLwzAUB_AgCs7pzbMEPGpdXpIm7bEbUwuTgVPQU8nadOtY05p0yr69GR149JQX3o_3eH-EroE8AIThiBJKRlxSzoCcoAGEggUhcHnqa0J5AJR9nKML5zaEUAghGqDPtG5t860LPH8dB4tZ8kJxsl01turWNR4r5zuNwakpG1urrvL11HS2afdYmQKntVppvFgr22pTmRVOis3OdbU23SU6K9XW6avjO0Tvj9O3yXMwmz-lk2QW5EyQLtBSCEaJjqHkvKB5uAQaRURTEZFcFFRKyVRcUBFDLkvB_D8nNF9yfx0pBbAhuu3n-ju-dtp12abZWeNXZpTziAoSR8Kr-17ltnHO6jJrbVUru8-AZIfwskN42TE8z-96vq5MoX6q__RNr7U3ulR_GuKQSWC_qS11uw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448260986</pqid></control><display><type>article</type><title>Improved ORB-SLAM2 Algorithm Based on Information Entropy and Image Sharpening Adjustment</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Yin, Dan ; Zhou, Siwei ; Wang, Pengcheng ; Lin, Manling ; Luo, Kaiqing ; Zhang, Haolan</creator><contributor>Lee, Sanghyuk ; Sanghyuk Lee</contributor><creatorcontrib>Yin, Dan ; Zhou, Siwei ; Wang, Pengcheng ; Lin, Manling ; Luo, Kaiqing ; Zhang, Haolan ; Lee, Sanghyuk ; Sanghyuk Lee</creatorcontrib><description>Simultaneous Localization and Mapping (SLAM) has become a research hotspot in the field of robots in recent years. However, most visual SLAM systems are based on static assumptions which ignored motion effects. If image sequences are not rich in texture information or the camera rotates at a large angle, SLAM system will fail to locate and map. To solve these problems, this paper proposes an improved ORB-SLAM2 algorithm based on information entropy and sharpening processing. The information entropy corresponding to the segmented image block is calculated, and the entropy threshold is determined by the adaptive algorithm of image entropy threshold, and then the image block which is smaller than the information entropy threshold is sharpened. The experimental results show that compared with the ORB-SLAM2 system, the relative trajectory error decreases by 36.1% and the absolute trajectory error decreases by 45.1% compared with ORB-SLAM2. Although these indicators are greatly improved, the processing time is not greatly increased. To some extent, the algorithm solves the problem of system localization and mapping failure caused by camera large angle rotation and insufficient image texture information.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/4724310</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Cameras ; Entropy (Information theory) ; Lasers ; Motion effects ; Neural networks ; Posture ; Real time ; Semantics ; Sensors ; Sharpening ; Simultaneous localization and mapping ; Texture ; Trajectories</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Kaiqing Luo et al.</rights><rights>Copyright © 2020 Kaiqing Luo et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-e766320e91f44d2c5b12880e2680c6d27773a9d2691c7f63777c02cb41560f613</citedby><cites>FETCH-LOGICAL-c360t-e766320e91f44d2c5b12880e2680c6d27773a9d2691c7f63777c02cb41560f613</cites><orcidid>0000-0002-6278-0917 ; 0000-0002-0367-2123 ; 0000-0002-5033-1866 ; 0000-0001-5398-5956 ; 0000-0001-5301-7365 ; 0000-0003-3680-5997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,4012,27906,27907,27908</link.rule.ids></links><search><contributor>Lee, Sanghyuk</contributor><contributor>Sanghyuk Lee</contributor><creatorcontrib>Yin, Dan</creatorcontrib><creatorcontrib>Zhou, Siwei</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Lin, Manling</creatorcontrib><creatorcontrib>Luo, Kaiqing</creatorcontrib><creatorcontrib>Zhang, Haolan</creatorcontrib><title>Improved ORB-SLAM2 Algorithm Based on Information Entropy and Image Sharpening Adjustment</title><title>Mathematical problems in engineering</title><description>Simultaneous Localization and Mapping (SLAM) has become a research hotspot in the field of robots in recent years. However, most visual SLAM systems are based on static assumptions which ignored motion effects. If image sequences are not rich in texture information or the camera rotates at a large angle, SLAM system will fail to locate and map. To solve these problems, this paper proposes an improved ORB-SLAM2 algorithm based on information entropy and sharpening processing. The information entropy corresponding to the segmented image block is calculated, and the entropy threshold is determined by the adaptive algorithm of image entropy threshold, and then the image block which is smaller than the information entropy threshold is sharpened. The experimental results show that compared with the ORB-SLAM2 system, the relative trajectory error decreases by 36.1% and the absolute trajectory error decreases by 45.1% compared with ORB-SLAM2. Although these indicators are greatly improved, the processing time is not greatly increased. To some extent, the algorithm solves the problem of system localization and mapping failure caused by camera large angle rotation and insufficient image texture information.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Cameras</subject><subject>Entropy (Information theory)</subject><subject>Lasers</subject><subject>Motion effects</subject><subject>Neural networks</subject><subject>Posture</subject><subject>Real time</subject><subject>Semantics</subject><subject>Sensors</subject><subject>Sharpening</subject><subject>Simultaneous localization and mapping</subject><subject>Texture</subject><subject>Trajectories</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqF0EFLwzAUB_AgCs7pzbMEPGpdXpIm7bEbUwuTgVPQU8nadOtY05p0yr69GR149JQX3o_3eH-EroE8AIThiBJKRlxSzoCcoAGEggUhcHnqa0J5AJR9nKML5zaEUAghGqDPtG5t860LPH8dB4tZ8kJxsl01turWNR4r5zuNwakpG1urrvL11HS2afdYmQKntVppvFgr22pTmRVOis3OdbU23SU6K9XW6avjO0Tvj9O3yXMwmz-lk2QW5EyQLtBSCEaJjqHkvKB5uAQaRURTEZFcFFRKyVRcUBFDLkvB_D8nNF9yfx0pBbAhuu3n-ju-dtp12abZWeNXZpTziAoSR8Kr-17ltnHO6jJrbVUru8-AZIfwskN42TE8z-96vq5MoX6q__RNr7U3ulR_GuKQSWC_qS11uw</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Yin, Dan</creator><creator>Zhou, Siwei</creator><creator>Wang, Pengcheng</creator><creator>Lin, Manling</creator><creator>Luo, Kaiqing</creator><creator>Zhang, Haolan</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-6278-0917</orcidid><orcidid>https://orcid.org/0000-0002-0367-2123</orcidid><orcidid>https://orcid.org/0000-0002-5033-1866</orcidid><orcidid>https://orcid.org/0000-0001-5398-5956</orcidid><orcidid>https://orcid.org/0000-0001-5301-7365</orcidid><orcidid>https://orcid.org/0000-0003-3680-5997</orcidid></search><sort><creationdate>2020</creationdate><title>Improved ORB-SLAM2 Algorithm Based on Information Entropy and Image Sharpening Adjustment</title><author>Yin, Dan ; Zhou, Siwei ; Wang, Pengcheng ; Lin, Manling ; Luo, Kaiqing ; Zhang, Haolan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-e766320e91f44d2c5b12880e2680c6d27773a9d2691c7f63777c02cb41560f613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Cameras</topic><topic>Entropy (Information theory)</topic><topic>Lasers</topic><topic>Motion effects</topic><topic>Neural networks</topic><topic>Posture</topic><topic>Real time</topic><topic>Semantics</topic><topic>Sensors</topic><topic>Sharpening</topic><topic>Simultaneous localization and mapping</topic><topic>Texture</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Dan</creatorcontrib><creatorcontrib>Zhou, Siwei</creatorcontrib><creatorcontrib>Wang, Pengcheng</creatorcontrib><creatorcontrib>Lin, Manling</creatorcontrib><creatorcontrib>Luo, Kaiqing</creatorcontrib><creatorcontrib>Zhang, Haolan</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Dan</au><au>Zhou, Siwei</au><au>Wang, Pengcheng</au><au>Lin, Manling</au><au>Luo, Kaiqing</au><au>Zhang, Haolan</au><au>Lee, Sanghyuk</au><au>Sanghyuk Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved ORB-SLAM2 Algorithm Based on Information Entropy and Image Sharpening Adjustment</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>Simultaneous Localization and Mapping (SLAM) has become a research hotspot in the field of robots in recent years. However, most visual SLAM systems are based on static assumptions which ignored motion effects. If image sequences are not rich in texture information or the camera rotates at a large angle, SLAM system will fail to locate and map. To solve these problems, this paper proposes an improved ORB-SLAM2 algorithm based on information entropy and sharpening processing. The information entropy corresponding to the segmented image block is calculated, and the entropy threshold is determined by the adaptive algorithm of image entropy threshold, and then the image block which is smaller than the information entropy threshold is sharpened. The experimental results show that compared with the ORB-SLAM2 system, the relative trajectory error decreases by 36.1% and the absolute trajectory error decreases by 45.1% compared with ORB-SLAM2. Although these indicators are greatly improved, the processing time is not greatly increased. To some extent, the algorithm solves the problem of system localization and mapping failure caused by camera large angle rotation and insufficient image texture information.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/4724310</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6278-0917</orcidid><orcidid>https://orcid.org/0000-0002-0367-2123</orcidid><orcidid>https://orcid.org/0000-0002-5033-1866</orcidid><orcidid>https://orcid.org/0000-0001-5398-5956</orcidid><orcidid>https://orcid.org/0000-0001-5301-7365</orcidid><orcidid>https://orcid.org/0000-0003-3680-5997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-13
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2448260986
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accuracy
Adaptive algorithms
Algorithms
Cameras
Entropy (Information theory)
Lasers
Motion effects
Neural networks
Posture
Real time
Semantics
Sensors
Sharpening
Simultaneous localization and mapping
Texture
Trajectories
title Improved ORB-SLAM2 Algorithm Based on Information Entropy and Image Sharpening Adjustment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20ORB-SLAM2%20Algorithm%20Based%20on%20Information%20Entropy%20and%20Image%20Sharpening%20Adjustment&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Yin,%20Dan&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/4724310&rft_dat=%3Cproquest_cross%3E2448260986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448260986&rft_id=info:pmid/&rfr_iscdi=true