Comparative study of the surface potential of magnetic and non-magnetic spherical objects in a magnetized radio-frequency discharge

We report measurements of the time-averaged surface floating potential of magnetic and non-magnetic spherical probes (or large dust particles) immersed in a magnetized capacitively coupled discharge. In this study, the size of the spherical probes is taken greater than the Debye length. The surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2020-10, Vol.86 (5), Article 905860508
Hauptverfasser: Choudhary, Mangilal, Bergert, Roman, Mitic, Slobodan, Thoma, Markus H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Journal of plasma physics
container_volume 86
creator Choudhary, Mangilal
Bergert, Roman
Mitic, Slobodan
Thoma, Markus H.
description We report measurements of the time-averaged surface floating potential of magnetic and non-magnetic spherical probes (or large dust particles) immersed in a magnetized capacitively coupled discharge. In this study, the size of the spherical probes is taken greater than the Debye length. The surface potential of a spherical probe first increases, i.e. becomes more negative at low magnetic field ($B < 0.05\ \textrm {T}$), attains a maximum value and decreases with further increase of the magnetic field strength ($B > 0.05\ \textrm {T}$). The rate of change of the surface potential in the presence of a $B$-field mainly depends on the background plasma and types of material of the objects. The results show that the surface potential of the magnetic sphere is higher (more negative) compared with the non-magnetic spherical probe. Hence, the smaller magnetic sphere collects more negative charges on its surface than a bigger non-magnetic sphere in a magnetized plasma. The different sized spherical probes have nearly the same surface potential above a threshold magnetic field ($B > 0.03\ \textrm {T}$), implying a smaller role of size dependence on the surface potential of spherical objects. The variation of the surface potential of the spherical probes is understood on the basis of a modification of the collection currents to their surface due to charge confinement and cross-field diffusion in the presence of an external magnetic field.
doi_str_mv 10.1017/S0022377820001130
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448247042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377820001130</cupid><sourcerecordid>2448247042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-d05243bf88f2d3e7c6786dd8870c9305048358d0c9f1ac74695abd766d7d1ad3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZtkZpIupfiCggu7HzJ5tCmdzJikQt3642aw6kJcXc49j_tA6JLANQHCb14AKGWcCwoAhDA4QhNS1rOCC-DHaDLSxciforMYN1nEgPIJ-pj33SCDTO7N4Jh2eo97i9M6g12wUhk89Mn45OR2JDq58iY5haXX2Pe--GnEYW2CU6Os3RiVInYey2_Du9E4SO36wgbzujNe7bF2Ua1lWJlzdGLlNpqLQ52i5f3dcv5YLJ4fnua3i0IxwlOhoaIla60QlmpmuKq5qLUWgoOaMaigFKwSOgNLpOL5-Eq2mte15ppIzabo6it2CH1eIaZm0--CzxMbWpaClhxKmlXkS6VCH2MwthmC62TYNwSa8dXNn1dnDzt4ZNcGp1fmN_p_1yeYQIIK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448247042</pqid></control><display><type>article</type><title>Comparative study of the surface potential of magnetic and non-magnetic spherical objects in a magnetized radio-frequency discharge</title><source>Cambridge University Press Journals Complete</source><creator>Choudhary, Mangilal ; Bergert, Roman ; Mitic, Slobodan ; Thoma, Markus H.</creator><creatorcontrib>Choudhary, Mangilal ; Bergert, Roman ; Mitic, Slobodan ; Thoma, Markus H.</creatorcontrib><description>We report measurements of the time-averaged surface floating potential of magnetic and non-magnetic spherical probes (or large dust particles) immersed in a magnetized capacitively coupled discharge. In this study, the size of the spherical probes is taken greater than the Debye length. The surface potential of a spherical probe first increases, i.e. becomes more negative at low magnetic field ($B &lt; 0.05\ \textrm {T}$), attains a maximum value and decreases with further increase of the magnetic field strength ($B &gt; 0.05\ \textrm {T}$). The rate of change of the surface potential in the presence of a $B$-field mainly depends on the background plasma and types of material of the objects. The results show that the surface potential of the magnetic sphere is higher (more negative) compared with the non-magnetic spherical probe. Hence, the smaller magnetic sphere collects more negative charges on its surface than a bigger non-magnetic sphere in a magnetized plasma. The different sized spherical probes have nearly the same surface potential above a threshold magnetic field ($B &gt; 0.03\ \textrm {T}$), implying a smaller role of size dependence on the surface potential of spherical objects. The variation of the surface potential of the spherical probes is understood on the basis of a modification of the collection currents to their surface due to charge confinement and cross-field diffusion in the presence of an external magnetic field.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377820001130</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Comparative studies ; Debye length ; Dust ; Experiments ; Field strength ; Magnetic fields ; Plasma ; Plasma physics ; Probes ; Radio frequency discharge ; Simulation ; Spherical plasmas</subject><ispartof>Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860508</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press</rights><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-d05243bf88f2d3e7c6786dd8870c9305048358d0c9f1ac74695abd766d7d1ad3</citedby><cites>FETCH-LOGICAL-c317t-d05243bf88f2d3e7c6786dd8870c9305048358d0c9f1ac74695abd766d7d1ad3</cites><orcidid>0000-0002-5980-1203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377820001130/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Choudhary, Mangilal</creatorcontrib><creatorcontrib>Bergert, Roman</creatorcontrib><creatorcontrib>Mitic, Slobodan</creatorcontrib><creatorcontrib>Thoma, Markus H.</creatorcontrib><title>Comparative study of the surface potential of magnetic and non-magnetic spherical objects in a magnetized radio-frequency discharge</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>We report measurements of the time-averaged surface floating potential of magnetic and non-magnetic spherical probes (or large dust particles) immersed in a magnetized capacitively coupled discharge. In this study, the size of the spherical probes is taken greater than the Debye length. The surface potential of a spherical probe first increases, i.e. becomes more negative at low magnetic field ($B &lt; 0.05\ \textrm {T}$), attains a maximum value and decreases with further increase of the magnetic field strength ($B &gt; 0.05\ \textrm {T}$). The rate of change of the surface potential in the presence of a $B$-field mainly depends on the background plasma and types of material of the objects. The results show that the surface potential of the magnetic sphere is higher (more negative) compared with the non-magnetic spherical probe. Hence, the smaller magnetic sphere collects more negative charges on its surface than a bigger non-magnetic sphere in a magnetized plasma. The different sized spherical probes have nearly the same surface potential above a threshold magnetic field ($B &gt; 0.03\ \textrm {T}$), implying a smaller role of size dependence on the surface potential of spherical objects. The variation of the surface potential of the spherical probes is understood on the basis of a modification of the collection currents to their surface due to charge confinement and cross-field diffusion in the presence of an external magnetic field.</description><subject>Comparative studies</subject><subject>Debye length</subject><subject>Dust</subject><subject>Experiments</subject><subject>Field strength</subject><subject>Magnetic fields</subject><subject>Plasma</subject><subject>Plasma physics</subject><subject>Probes</subject><subject>Radio frequency discharge</subject><subject>Simulation</subject><subject>Spherical plasmas</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtKAzEUDaJgrX6Au4Dr0ZtkZpIupfiCggu7HzJ5tCmdzJikQt3642aw6kJcXc49j_tA6JLANQHCb14AKGWcCwoAhDA4QhNS1rOCC-DHaDLSxciforMYN1nEgPIJ-pj33SCDTO7N4Jh2eo97i9M6g12wUhk89Mn45OR2JDq58iY5haXX2Pe--GnEYW2CU6Os3RiVInYey2_Du9E4SO36wgbzujNe7bF2Ua1lWJlzdGLlNpqLQ52i5f3dcv5YLJ4fnua3i0IxwlOhoaIla60QlmpmuKq5qLUWgoOaMaigFKwSOgNLpOL5-Eq2mte15ppIzabo6it2CH1eIaZm0--CzxMbWpaClhxKmlXkS6VCH2MwthmC62TYNwSa8dXNn1dnDzt4ZNcGp1fmN_p_1yeYQIIK</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Choudhary, Mangilal</creator><creator>Bergert, Roman</creator><creator>Mitic, Slobodan</creator><creator>Thoma, Markus H.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5980-1203</orcidid></search><sort><creationdate>202010</creationdate><title>Comparative study of the surface potential of magnetic and non-magnetic spherical objects in a magnetized radio-frequency discharge</title><author>Choudhary, Mangilal ; Bergert, Roman ; Mitic, Slobodan ; Thoma, Markus H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-d05243bf88f2d3e7c6786dd8870c9305048358d0c9f1ac74695abd766d7d1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Comparative studies</topic><topic>Debye length</topic><topic>Dust</topic><topic>Experiments</topic><topic>Field strength</topic><topic>Magnetic fields</topic><topic>Plasma</topic><topic>Plasma physics</topic><topic>Probes</topic><topic>Radio frequency discharge</topic><topic>Simulation</topic><topic>Spherical plasmas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhary, Mangilal</creatorcontrib><creatorcontrib>Bergert, Roman</creatorcontrib><creatorcontrib>Mitic, Slobodan</creatorcontrib><creatorcontrib>Thoma, Markus H.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhary, Mangilal</au><au>Bergert, Roman</au><au>Mitic, Slobodan</au><au>Thoma, Markus H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study of the surface potential of magnetic and non-magnetic spherical objects in a magnetized radio-frequency discharge</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2020-10</date><risdate>2020</risdate><volume>86</volume><issue>5</issue><artnum>905860508</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>We report measurements of the time-averaged surface floating potential of magnetic and non-magnetic spherical probes (or large dust particles) immersed in a magnetized capacitively coupled discharge. In this study, the size of the spherical probes is taken greater than the Debye length. The surface potential of a spherical probe first increases, i.e. becomes more negative at low magnetic field ($B &lt; 0.05\ \textrm {T}$), attains a maximum value and decreases with further increase of the magnetic field strength ($B &gt; 0.05\ \textrm {T}$). The rate of change of the surface potential in the presence of a $B$-field mainly depends on the background plasma and types of material of the objects. The results show that the surface potential of the magnetic sphere is higher (more negative) compared with the non-magnetic spherical probe. Hence, the smaller magnetic sphere collects more negative charges on its surface than a bigger non-magnetic sphere in a magnetized plasma. The different sized spherical probes have nearly the same surface potential above a threshold magnetic field ($B &gt; 0.03\ \textrm {T}$), implying a smaller role of size dependence on the surface potential of spherical objects. The variation of the surface potential of the spherical probes is understood on the basis of a modification of the collection currents to their surface due to charge confinement and cross-field diffusion in the presence of an external magnetic field.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377820001130</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-5980-1203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2020-10, Vol.86 (5), Article 905860508
issn 0022-3778
1469-7807
language eng
recordid cdi_proquest_journals_2448247042
source Cambridge University Press Journals Complete
subjects Comparative studies
Debye length
Dust
Experiments
Field strength
Magnetic fields
Plasma
Plasma physics
Probes
Radio frequency discharge
Simulation
Spherical plasmas
title Comparative study of the surface potential of magnetic and non-magnetic spherical objects in a magnetized radio-frequency discharge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A41%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20of%20the%20surface%20potential%20of%20magnetic%20and%20non-magnetic%20spherical%20objects%20in%20a%20magnetized%20radio-frequency%20discharge&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Choudhary,%20Mangilal&rft.date=2020-10&rft.volume=86&rft.issue=5&rft.artnum=905860508&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377820001130&rft_dat=%3Cproquest_cross%3E2448247042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448247042&rft_id=info:pmid/&rft_cupid=10_1017_S0022377820001130&rfr_iscdi=true