Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application
This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaf...
Gespeichert in:
Veröffentlicht in: | International journal of applied ceramic technology 2020-11, Vol.17 (6), p.2752-2761 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2761 |
---|---|
container_issue | 6 |
container_start_page | 2752 |
container_title | International journal of applied ceramic technology |
container_volume | 17 |
creator | Heidari, Fatemeh Bazargan‐Lari, Reza Razavi, Mehdi Fahimipour, Farahnaz Vashaee, Daryoosh Tayebi, Lobat |
description | This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity. |
doi_str_mv | 10.1111/ijac.13596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448239797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448239797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRiMEEqWw4QSW2CGltWPHSZZVxU9RBRuQ2EWOPS4uwQ52KhpWHIEzchJSwhIxmxlp3jcjvSg6JXhC-pqatZATQtOC70UjkjEWZwwn-_2cMh6nLHk8jI5CWGNMGaV8FD3fCuu-Pj6fOuXdthONaE0LSFiF7F-b6buxErmtUYCCFFq7WiHtPKqcBdSaEDaAwK6MBfDGrpBomtrIPuvscXSgRR3g5LePo4fLi_v5dby8u1rMZ8tYUkx4XJBUMZ5KWQjGsiTPlM5xVWlV4BxyQnTBFFcsESKHShaci1zRTAjIACTWQMfR2XC38e51A6Et127jbf-yTBjLE1pkRdZT5wMlvQvBgy4bb16E70qCy53Mciez_JHZw2SA30wN3T9kubiZzYfMN07mfEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448239797</pqid></control><display><type>article</type><title>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heidari, Fatemeh ; Bazargan‐Lari, Reza ; Razavi, Mehdi ; Fahimipour, Farahnaz ; Vashaee, Daryoosh ; Tayebi, Lobat</creator><creatorcontrib>Heidari, Fatemeh ; Bazargan‐Lari, Reza ; Razavi, Mehdi ; Fahimipour, Farahnaz ; Vashaee, Daryoosh ; Tayebi, Lobat</creatorcontrib><description>This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13596</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Alkaline phosphatase ; Apatite ; Atomic force microscopy ; bioceramics ; Biocompatibility ; Biomedical materials ; bone ; Bones ; Compressive strength ; Electron microscopy ; Fourier transforms ; Fracture toughness ; Hydroxyapatite ; Mechanical properties ; Microscopy ; nanomaterials ; Scaffolds ; Sol-gel processes ; Spectrum analysis ; Tissue engineering ; Zinc oxide ; Zinc oxides</subject><ispartof>International journal of applied ceramic technology, 2020-11, Vol.17 (6), p.2752-2761</ispartof><rights>2020 The American Ceramic Society</rights><rights>Copyright © 2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</citedby><cites>FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</cites><orcidid>0000-0003-1947-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13596$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13596$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Heidari, Fatemeh</creatorcontrib><creatorcontrib>Bazargan‐Lari, Reza</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><creatorcontrib>Fahimipour, Farahnaz</creatorcontrib><creatorcontrib>Vashaee, Daryoosh</creatorcontrib><creatorcontrib>Tayebi, Lobat</creatorcontrib><title>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</title><title>International journal of applied ceramic technology</title><description>This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.</description><subject>Alkaline phosphatase</subject><subject>Apatite</subject><subject>Atomic force microscopy</subject><subject>bioceramics</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bone</subject><subject>Bones</subject><subject>Compressive strength</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Fracture toughness</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>nanomaterials</subject><subject>Scaffolds</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Tissue engineering</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRiMEEqWw4QSW2CGltWPHSZZVxU9RBRuQ2EWOPS4uwQ52KhpWHIEzchJSwhIxmxlp3jcjvSg6JXhC-pqatZATQtOC70UjkjEWZwwn-_2cMh6nLHk8jI5CWGNMGaV8FD3fCuu-Pj6fOuXdthONaE0LSFiF7F-b6buxErmtUYCCFFq7WiHtPKqcBdSaEDaAwK6MBfDGrpBomtrIPuvscXSgRR3g5LePo4fLi_v5dby8u1rMZ8tYUkx4XJBUMZ5KWQjGsiTPlM5xVWlV4BxyQnTBFFcsESKHShaci1zRTAjIACTWQMfR2XC38e51A6Et127jbf-yTBjLE1pkRdZT5wMlvQvBgy4bb16E70qCy53Mciez_JHZw2SA30wN3T9kubiZzYfMN07mfEs</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Heidari, Fatemeh</creator><creator>Bazargan‐Lari, Reza</creator><creator>Razavi, Mehdi</creator><creator>Fahimipour, Farahnaz</creator><creator>Vashaee, Daryoosh</creator><creator>Tayebi, Lobat</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1947-5658</orcidid></search><sort><creationdate>202011</creationdate><title>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</title><author>Heidari, Fatemeh ; Bazargan‐Lari, Reza ; Razavi, Mehdi ; Fahimipour, Farahnaz ; Vashaee, Daryoosh ; Tayebi, Lobat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Apatite</topic><topic>Atomic force microscopy</topic><topic>bioceramics</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bone</topic><topic>Bones</topic><topic>Compressive strength</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Fracture toughness</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>nanomaterials</topic><topic>Scaffolds</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Tissue engineering</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidari, Fatemeh</creatorcontrib><creatorcontrib>Bazargan‐Lari, Reza</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><creatorcontrib>Fahimipour, Farahnaz</creatorcontrib><creatorcontrib>Vashaee, Daryoosh</creatorcontrib><creatorcontrib>Tayebi, Lobat</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidari, Fatemeh</au><au>Bazargan‐Lari, Reza</au><au>Razavi, Mehdi</au><au>Fahimipour, Farahnaz</au><au>Vashaee, Daryoosh</au><au>Tayebi, Lobat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2020-11</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>2752</spage><epage>2761</epage><pages>2752-2761</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13596</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1947-5658</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-542X |
ispartof | International journal of applied ceramic technology, 2020-11, Vol.17 (6), p.2752-2761 |
issn | 1546-542X 1744-7402 |
language | eng |
recordid | cdi_proquest_journals_2448239797 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alkaline phosphatase Apatite Atomic force microscopy bioceramics Biocompatibility Biomedical materials bone Bones Compressive strength Electron microscopy Fourier transforms Fracture toughness Hydroxyapatite Mechanical properties Microscopy nanomaterials Scaffolds Sol-gel processes Spectrum analysis Tissue engineering Zinc oxide Zinc oxides |
title | Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%E2%80%90hydroxyapatite%20and%20nano%E2%80%90hydroxyapatite/zinc%20oxide%20scaffold%20for%20bone%20tissue%20engineering%20application&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Heidari,%20Fatemeh&rft.date=2020-11&rft.volume=17&rft.issue=6&rft.spage=2752&rft.epage=2761&rft.pages=2752-2761&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13596&rft_dat=%3Cproquest_cross%3E2448239797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448239797&rft_id=info:pmid/&rfr_iscdi=true |