Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application

This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of applied ceramic technology 2020-11, Vol.17 (6), p.2752-2761
Hauptverfasser: Heidari, Fatemeh, Bazargan‐Lari, Reza, Razavi, Mehdi, Fahimipour, Farahnaz, Vashaee, Daryoosh, Tayebi, Lobat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2761
container_issue 6
container_start_page 2752
container_title International journal of applied ceramic technology
container_volume 17
creator Heidari, Fatemeh
Bazargan‐Lari, Reza
Razavi, Mehdi
Fahimipour, Farahnaz
Vashaee, Daryoosh
Tayebi, Lobat
description This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.
doi_str_mv 10.1111/ijac.13596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448239797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448239797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQRiMEEqWw4QSW2CGltWPHSZZVxU9RBRuQ2EWOPS4uwQ52KhpWHIEzchJSwhIxmxlp3jcjvSg6JXhC-pqatZATQtOC70UjkjEWZwwn-_2cMh6nLHk8jI5CWGNMGaV8FD3fCuu-Pj6fOuXdthONaE0LSFiF7F-b6buxErmtUYCCFFq7WiHtPKqcBdSaEDaAwK6MBfDGrpBomtrIPuvscXSgRR3g5LePo4fLi_v5dby8u1rMZ8tYUkx4XJBUMZ5KWQjGsiTPlM5xVWlV4BxyQnTBFFcsESKHShaci1zRTAjIACTWQMfR2XC38e51A6Et127jbf-yTBjLE1pkRdZT5wMlvQvBgy4bb16E70qCy53Mciez_JHZw2SA30wN3T9kubiZzYfMN07mfEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448239797</pqid></control><display><type>article</type><title>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Heidari, Fatemeh ; Bazargan‐Lari, Reza ; Razavi, Mehdi ; Fahimipour, Farahnaz ; Vashaee, Daryoosh ; Tayebi, Lobat</creator><creatorcontrib>Heidari, Fatemeh ; Bazargan‐Lari, Reza ; Razavi, Mehdi ; Fahimipour, Farahnaz ; Vashaee, Daryoosh ; Tayebi, Lobat</creatorcontrib><description>This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.</description><identifier>ISSN: 1546-542X</identifier><identifier>EISSN: 1744-7402</identifier><identifier>DOI: 10.1111/ijac.13596</identifier><language>eng</language><publisher>Malden: Wiley Subscription Services, Inc</publisher><subject>Alkaline phosphatase ; Apatite ; Atomic force microscopy ; bioceramics ; Biocompatibility ; Biomedical materials ; bone ; Bones ; Compressive strength ; Electron microscopy ; Fourier transforms ; Fracture toughness ; Hydroxyapatite ; Mechanical properties ; Microscopy ; nanomaterials ; Scaffolds ; Sol-gel processes ; Spectrum analysis ; Tissue engineering ; Zinc oxide ; Zinc oxides</subject><ispartof>International journal of applied ceramic technology, 2020-11, Vol.17 (6), p.2752-2761</ispartof><rights>2020 The American Ceramic Society</rights><rights>Copyright © 2020 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</citedby><cites>FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</cites><orcidid>0000-0003-1947-5658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fijac.13596$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fijac.13596$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Heidari, Fatemeh</creatorcontrib><creatorcontrib>Bazargan‐Lari, Reza</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><creatorcontrib>Fahimipour, Farahnaz</creatorcontrib><creatorcontrib>Vashaee, Daryoosh</creatorcontrib><creatorcontrib>Tayebi, Lobat</creatorcontrib><title>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</title><title>International journal of applied ceramic technology</title><description>This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.</description><subject>Alkaline phosphatase</subject><subject>Apatite</subject><subject>Atomic force microscopy</subject><subject>bioceramics</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>bone</subject><subject>Bones</subject><subject>Compressive strength</subject><subject>Electron microscopy</subject><subject>Fourier transforms</subject><subject>Fracture toughness</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>nanomaterials</subject><subject>Scaffolds</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Tissue engineering</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>1546-542X</issn><issn>1744-7402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQRiMEEqWw4QSW2CGltWPHSZZVxU9RBRuQ2EWOPS4uwQ52KhpWHIEzchJSwhIxmxlp3jcjvSg6JXhC-pqatZATQtOC70UjkjEWZwwn-_2cMh6nLHk8jI5CWGNMGaV8FD3fCuu-Pj6fOuXdthONaE0LSFiF7F-b6buxErmtUYCCFFq7WiHtPKqcBdSaEDaAwK6MBfDGrpBomtrIPuvscXSgRR3g5LePo4fLi_v5dby8u1rMZ8tYUkx4XJBUMZ5KWQjGsiTPlM5xVWlV4BxyQnTBFFcsESKHShaci1zRTAjIACTWQMfR2XC38e51A6Et127jbf-yTBjLE1pkRdZT5wMlvQvBgy4bb16E70qCy53Mciez_JHZw2SA30wN3T9kubiZzYfMN07mfEs</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Heidari, Fatemeh</creator><creator>Bazargan‐Lari, Reza</creator><creator>Razavi, Mehdi</creator><creator>Fahimipour, Farahnaz</creator><creator>Vashaee, Daryoosh</creator><creator>Tayebi, Lobat</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-1947-5658</orcidid></search><sort><creationdate>202011</creationdate><title>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</title><author>Heidari, Fatemeh ; Bazargan‐Lari, Reza ; Razavi, Mehdi ; Fahimipour, Farahnaz ; Vashaee, Daryoosh ; Tayebi, Lobat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3016-915d465cc9a447287df80bbfd908e811f94d6d42aa8ebc966a8d37aae7eec0fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alkaline phosphatase</topic><topic>Apatite</topic><topic>Atomic force microscopy</topic><topic>bioceramics</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>bone</topic><topic>Bones</topic><topic>Compressive strength</topic><topic>Electron microscopy</topic><topic>Fourier transforms</topic><topic>Fracture toughness</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>nanomaterials</topic><topic>Scaffolds</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Tissue engineering</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heidari, Fatemeh</creatorcontrib><creatorcontrib>Bazargan‐Lari, Reza</creatorcontrib><creatorcontrib>Razavi, Mehdi</creatorcontrib><creatorcontrib>Fahimipour, Farahnaz</creatorcontrib><creatorcontrib>Vashaee, Daryoosh</creatorcontrib><creatorcontrib>Tayebi, Lobat</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied ceramic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heidari, Fatemeh</au><au>Bazargan‐Lari, Reza</au><au>Razavi, Mehdi</au><au>Fahimipour, Farahnaz</au><au>Vashaee, Daryoosh</au><au>Tayebi, Lobat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application</atitle><jtitle>International journal of applied ceramic technology</jtitle><date>2020-11</date><risdate>2020</risdate><volume>17</volume><issue>6</issue><spage>2752</spage><epage>2761</epage><pages>2752-2761</pages><issn>1546-542X</issn><eissn>1744-7402</eissn><abstract>This research aims to evaluate the mechanical properties, biocompatibility, and degradation behavior of scaffolds made of pure hydroxyapatite (HA) and HA‐modified by ZnO for bone tissue engineering applications. HA and ZnO were developed using sol‐gel and precipitation methods respectively. The scaffolds properties were characterized using X‐ray diffraction (XRD), Fourier transform spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), atomic absorption (AA), and atomic force microscopy (AFM). The interaction of scaffold with cells was assessed using in vitro cell proliferation and alkaline phosphatase (ALP) assays. The obtained results indicate that the HA/ZnO scaffolds possess higher compressive strength, fracture toughness, and density—but lower hardness—when compared to the pure HA scaffolds. After immersing the scaffold in the SBF solution, more deposited apatite appeared on the HA/ZnO, which results in the rougher surface on this scaffold compared to the pure HA scaffold. Finally, the in vitro biological analysis using human osteoblast cells reveals that scaffolds are biocompatible with adequate ALP activity.</abstract><cop>Malden</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijac.13596</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1947-5658</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1546-542X
ispartof International journal of applied ceramic technology, 2020-11, Vol.17 (6), p.2752-2761
issn 1546-542X
1744-7402
language eng
recordid cdi_proquest_journals_2448239797
source Wiley Online Library Journals Frontfile Complete
subjects Alkaline phosphatase
Apatite
Atomic force microscopy
bioceramics
Biocompatibility
Biomedical materials
bone
Bones
Compressive strength
Electron microscopy
Fourier transforms
Fracture toughness
Hydroxyapatite
Mechanical properties
Microscopy
nanomaterials
Scaffolds
Sol-gel processes
Spectrum analysis
Tissue engineering
Zinc oxide
Zinc oxides
title Nano‐hydroxyapatite and nano‐hydroxyapatite/zinc oxide scaffold for bone tissue engineering application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A51%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano%E2%80%90hydroxyapatite%20and%20nano%E2%80%90hydroxyapatite/zinc%20oxide%20scaffold%20for%20bone%20tissue%20engineering%20application&rft.jtitle=International%20journal%20of%20applied%20ceramic%20technology&rft.au=Heidari,%20Fatemeh&rft.date=2020-11&rft.volume=17&rft.issue=6&rft.spage=2752&rft.epage=2761&rft.pages=2752-2761&rft.issn=1546-542X&rft.eissn=1744-7402&rft_id=info:doi/10.1111/ijac.13596&rft_dat=%3Cproquest_cross%3E2448239797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448239797&rft_id=info:pmid/&rfr_iscdi=true