CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633‐418 airfoil

The implementation of a model to simulate distributed surface roughness, which is the new k−ω extension by Knopp et al. into the DTU Wind Energy in‐house CFD Reynolds‐Average Naviar Stokes solver EllipSys, was validated against wind tunnel experiments conducted in the Laminar Wind Tunnel of the Inst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wind energy (Chichester, England) England), 2020-11, Vol.23 (11), p.2056-2067
Hauptverfasser: Kruse, Emil Krog, Sørensen, Niels, Bak, Christian, Nielsen, Mikkel Schou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2067
container_issue 11
container_start_page 2056
container_title Wind energy (Chichester, England)
container_volume 23
creator Kruse, Emil Krog
Sørensen, Niels
Bak, Christian
Nielsen, Mikkel Schou
description The implementation of a model to simulate distributed surface roughness, which is the new k−ω extension by Knopp et al. into the DTU Wind Energy in‐house CFD Reynolds‐Average Naviar Stokes solver EllipSys, was validated against wind tunnel experiments conducted in the Laminar Wind Tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The effort was to predict the aerodynamic penalty of five cases of leading edge roughness applied to a NACA 633‐418. Three cases were sandpaper, and two cases were turbulators/zigzag tape. Simulation of the sandpaper cases showed some agreement in the tendencies of decreased lift and increased drag as a function of angle of attack. However, the magnitudes of the aerodynamic changes were predicted and underestimated the lift and overestimated the drag. Modeling the zigzag tape using the roughness model was not successful, because the influence from the model was too small. The simulated zigzag tape hardly deviated from the fully turbulent simulation, so when using the model in its current form, one should be aware of its limitations.
doi_str_mv 10.1002/we.2545
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2448239493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448239493</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1345-4dbbb1b13d1c9fc61934427be5b4372bcbea2b0759218634fea01449a1666ad33</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqUgrmCJJUrx2E4aL6vQAlIFGxBLy04ccOXEIW6IuuMIPSMnIWlZ_ZnRm_mjj9A1kBkQQu96M6Mxj0_QBIgQEaSUnx7qOOKU83N0EcKGECAA6QRV2eoeB1t1Tm2trwNWdYHNt3Ldoce-xKppnM2Vts5ud4cB7pVzuPXdx2dtQsCVL4w7cqbAw5bCz4tsgRPGfn_2HFKsbFt66y7RWalcMFf_OkVvq-Vr9hitXx6essU6aoDx4c9Caw0aWAG5KPMEBOOczrWJNWdzqnNtFNVkHgsKacJ4aRQBzoWCJElUwdgU3RzvNq3_6kzYyo3v2nqwlEMEKWWCi5G6PVK9dWYnm9ZWqt1JIHIMUvZGjkHK9-Uo7A9YLGZK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448239493</pqid></control><display><type>article</type><title>CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633‐418 airfoil</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kruse, Emil Krog ; Sørensen, Niels ; Bak, Christian ; Nielsen, Mikkel Schou</creator><creatorcontrib>Kruse, Emil Krog ; Sørensen, Niels ; Bak, Christian ; Nielsen, Mikkel Schou</creatorcontrib><description>The implementation of a model to simulate distributed surface roughness, which is the new k−ω extension by Knopp et al. into the DTU Wind Energy in‐house CFD Reynolds‐Average Naviar Stokes solver EllipSys, was validated against wind tunnel experiments conducted in the Laminar Wind Tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The effort was to predict the aerodynamic penalty of five cases of leading edge roughness applied to a NACA 633‐418. Three cases were sandpaper, and two cases were turbulators/zigzag tape. Simulation of the sandpaper cases showed some agreement in the tendencies of decreased lift and increased drag as a function of angle of attack. However, the magnitudes of the aerodynamic changes were predicted and underestimated the lift and overestimated the drag. Modeling the zigzag tape using the roughness model was not successful, because the influence from the model was too small. The simulated zigzag tape hardly deviated from the fully turbulent simulation, so when using the model in its current form, one should be aware of its limitations.</description><identifier>ISSN: 1095-4244</identifier><identifier>EISSN: 1099-1824</identifier><identifier>DOI: 10.1002/we.2545</identifier><language>eng</language><publisher>Bognor Regis: John Wiley &amp; Sons, Inc</publisher><subject>Aerodynamics ; Angle of attack ; CFD ; Computational fluid dynamics ; Computer simulation ; distributed roughness ; Drag ; Gas dynamics ; leading edge roughness ; LER ; NACA 633‐418 ; Sandpaper ; Surface roughness ; Wind power ; Wind tunnel testing ; Wind tunnels</subject><ispartof>Wind energy (Chichester, England), 2020-11, Vol.23 (11), p.2056-2067</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6915-4652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwe.2545$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwe.2545$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kruse, Emil Krog</creatorcontrib><creatorcontrib>Sørensen, Niels</creatorcontrib><creatorcontrib>Bak, Christian</creatorcontrib><creatorcontrib>Nielsen, Mikkel Schou</creatorcontrib><title>CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633‐418 airfoil</title><title>Wind energy (Chichester, England)</title><description>The implementation of a model to simulate distributed surface roughness, which is the new k−ω extension by Knopp et al. into the DTU Wind Energy in‐house CFD Reynolds‐Average Naviar Stokes solver EllipSys, was validated against wind tunnel experiments conducted in the Laminar Wind Tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The effort was to predict the aerodynamic penalty of five cases of leading edge roughness applied to a NACA 633‐418. Three cases were sandpaper, and two cases were turbulators/zigzag tape. Simulation of the sandpaper cases showed some agreement in the tendencies of decreased lift and increased drag as a function of angle of attack. However, the magnitudes of the aerodynamic changes were predicted and underestimated the lift and overestimated the drag. Modeling the zigzag tape using the roughness model was not successful, because the influence from the model was too small. The simulated zigzag tape hardly deviated from the fully turbulent simulation, so when using the model in its current form, one should be aware of its limitations.</description><subject>Aerodynamics</subject><subject>Angle of attack</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>distributed roughness</subject><subject>Drag</subject><subject>Gas dynamics</subject><subject>leading edge roughness</subject><subject>LER</subject><subject>NACA 633‐418</subject><subject>Sandpaper</subject><subject>Surface roughness</subject><subject>Wind power</subject><subject>Wind tunnel testing</subject><subject>Wind tunnels</subject><issn>1095-4244</issn><issn>1099-1824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRS0EEqUgrmCJJUrx2E4aL6vQAlIFGxBLy04ccOXEIW6IuuMIPSMnIWlZ_ZnRm_mjj9A1kBkQQu96M6Mxj0_QBIgQEaSUnx7qOOKU83N0EcKGECAA6QRV2eoeB1t1Tm2trwNWdYHNt3Ldoce-xKppnM2Vts5ud4cB7pVzuPXdx2dtQsCVL4w7cqbAw5bCz4tsgRPGfn_2HFKsbFt66y7RWalcMFf_OkVvq-Vr9hitXx6essU6aoDx4c9Caw0aWAG5KPMEBOOczrWJNWdzqnNtFNVkHgsKacJ4aRQBzoWCJElUwdgU3RzvNq3_6kzYyo3v2nqwlEMEKWWCi5G6PVK9dWYnm9ZWqt1JIHIMUvZGjkHK9-Uo7A9YLGZK</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Kruse, Emil Krog</creator><creator>Sørensen, Niels</creator><creator>Bak, Christian</creator><creator>Nielsen, Mikkel Schou</creator><general>John Wiley &amp; Sons, Inc</general><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-6915-4652</orcidid></search><sort><creationdate>202011</creationdate><title>CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633‐418 airfoil</title><author>Kruse, Emil Krog ; Sørensen, Niels ; Bak, Christian ; Nielsen, Mikkel Schou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1345-4dbbb1b13d1c9fc61934427be5b4372bcbea2b0759218634fea01449a1666ad33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Angle of attack</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>distributed roughness</topic><topic>Drag</topic><topic>Gas dynamics</topic><topic>leading edge roughness</topic><topic>LER</topic><topic>NACA 633‐418</topic><topic>Sandpaper</topic><topic>Surface roughness</topic><topic>Wind power</topic><topic>Wind tunnel testing</topic><topic>Wind tunnels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, Emil Krog</creatorcontrib><creatorcontrib>Sørensen, Niels</creatorcontrib><creatorcontrib>Bak, Christian</creatorcontrib><creatorcontrib>Nielsen, Mikkel Schou</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Wind energy (Chichester, England)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, Emil Krog</au><au>Sørensen, Niels</au><au>Bak, Christian</au><au>Nielsen, Mikkel Schou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633‐418 airfoil</atitle><jtitle>Wind energy (Chichester, England)</jtitle><date>2020-11</date><risdate>2020</risdate><volume>23</volume><issue>11</issue><spage>2056</spage><epage>2067</epage><pages>2056-2067</pages><issn>1095-4244</issn><eissn>1099-1824</eissn><abstract>The implementation of a model to simulate distributed surface roughness, which is the new k−ω extension by Knopp et al. into the DTU Wind Energy in‐house CFD Reynolds‐Average Naviar Stokes solver EllipSys, was validated against wind tunnel experiments conducted in the Laminar Wind Tunnel of the Institute of Aerodynamics and Gas Dynamics, University of Stuttgart. The effort was to predict the aerodynamic penalty of five cases of leading edge roughness applied to a NACA 633‐418. Three cases were sandpaper, and two cases were turbulators/zigzag tape. Simulation of the sandpaper cases showed some agreement in the tendencies of decreased lift and increased drag as a function of angle of attack. However, the magnitudes of the aerodynamic changes were predicted and underestimated the lift and overestimated the drag. Modeling the zigzag tape using the roughness model was not successful, because the influence from the model was too small. The simulated zigzag tape hardly deviated from the fully turbulent simulation, so when using the model in its current form, one should be aware of its limitations.</abstract><cop>Bognor Regis</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/we.2545</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6915-4652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1095-4244
ispartof Wind energy (Chichester, England), 2020-11, Vol.23 (11), p.2056-2067
issn 1095-4244
1099-1824
language eng
recordid cdi_proquest_journals_2448239493
source Wiley Online Library Journals Frontfile Complete
subjects Aerodynamics
Angle of attack
CFD
Computational fluid dynamics
Computer simulation
distributed roughness
Drag
Gas dynamics
leading edge roughness
LER
NACA 633‐418
Sandpaper
Surface roughness
Wind power
Wind tunnel testing
Wind tunnels
title CFD simulations and evaluation of applicability of a wall roughness model applied on a NACA 633‐418 airfoil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T00%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFD%20simulations%20and%20evaluation%20of%20applicability%20of%20a%20wall%20roughness%20model%20applied%20on%20a%20NACA%20633%E2%80%90418%20airfoil&rft.jtitle=Wind%20energy%20(Chichester,%20England)&rft.au=Kruse,%20Emil%20Krog&rft.date=2020-11&rft.volume=23&rft.issue=11&rft.spage=2056&rft.epage=2067&rft.pages=2056-2067&rft.issn=1095-4244&rft.eissn=1099-1824&rft_id=info:doi/10.1002/we.2545&rft_dat=%3Cproquest_wiley%3E2448239493%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448239493&rft_id=info:pmid/&rfr_iscdi=true