Early Prediction of University Dropouts - A Random Forest Approach
We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction...
Gespeichert in:
Veröffentlicht in: | Jahrbücher für Nationalökonomie und Statistik 2020-12, Vol.240 (6), p.743-789 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 789 |
---|---|
container_issue | 6 |
container_start_page | 743 |
container_title | Jahrbücher für Nationalökonomie und Statistik |
container_volume | 240 |
creator | Behr, Andreas Giese, Marco Teguim K, Herve D. Theune, Katja |
description | We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study. |
doi_str_mv | 10.1515/jbnst-2019-0006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448085675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448085675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKfPvgZ8jstXk_ZFmHPzg6GiDnwLMU1mx9bUpHX0v7dz4kDw6d4L53fO5QBwSvA5SUgyWLyVsUYUkwxhjMUe6FEmBMI8e90HPYwpQRxTeQiOYlx0JyOM9cDlWIdlCx-DzQtTF76E3sFZWXzaEIu6hVfBV76pI0RwCJ90mfsVnPhgYw2HVRW8Nu_H4MDpZbQnP7MPZpPxy-gGTR-ub0fDKTIskzUSlkhsdcqEdTlmkjorGCfMJizJTWqcFDq31mkjKHaG50xkmcAuk0JSKRnrg7Otbxf70XQfqIVvQtlFKsp5itNEyKRTDbYqE3yMwTpVhWKlQ6sIVpui1HdRalOU2hTVERdbYq2XtQ25nYem7Zad_T8k5VhIznaRc1sWPqp1Ef0v-4dRd5P7Z_YFGaeAkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448085675</pqid></control><display><type>article</type><title>Early Prediction of University Dropouts - A Random Forest Approach</title><source>De Gruyter journals</source><creator>Behr, Andreas ; Giese, Marco ; Teguim K, Herve D. ; Theune, Katja</creator><creatorcontrib>Behr, Andreas ; Giese, Marco ; Teguim K, Herve D. ; Theune, Katja</creatorcontrib><description>We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.</description><identifier>ISSN: 0021-4027</identifier><identifier>EISSN: 2366-049X</identifier><identifier>DOI: 10.1515/jbnst-2019-0006</identifier><language>eng</language><publisher>Stuttgart: Walter de Gruyter GmbH</publisher><subject>At risk populations ; Classification ; Colleges & universities ; Counseling services ; dropout prediction ; Dropping out ; educational data mining ; Forests ; higher education ; I23 ; random forest ; School dropouts ; Secondary schools ; Self concept ; Self evaluation ; student dropout ; Students ; Trees ; University students</subject><ispartof>Jahrbücher für Nationalökonomie und Statistik, 2020-12, Vol.240 (6), p.743-789</ispartof><rights>Alle Dokumente genießen nach § 4 und § 87 a ff UrhG urheberrechtlichen Schutz. Eine Bearbeitung oder Vervielfältigung ist nicht zulässig. www.genios.de</rights><rights>2020 Oldenbourg Wissenschaftsverlag GmbH, Published by De Gruyter Oldenbourg, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</citedby><cites>FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jbnst-2019-0006/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jbnst-2019-0006/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>312,314,776,780,787,27901,27902,66497,68281</link.rule.ids><backlink>$$Uhttps://www.wiso-net.de/docPreview/exlibris/JFNS__jbnst-2019-0006$$DView content in WISO$$Hfree_for_read</backlink></links><search><creatorcontrib>Behr, Andreas</creatorcontrib><creatorcontrib>Giese, Marco</creatorcontrib><creatorcontrib>Teguim K, Herve D.</creatorcontrib><creatorcontrib>Theune, Katja</creatorcontrib><title>Early Prediction of University Dropouts - A Random Forest Approach</title><title>Jahrbücher für Nationalökonomie und Statistik</title><description>We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.</description><subject>At risk populations</subject><subject>Classification</subject><subject>Colleges & universities</subject><subject>Counseling services</subject><subject>dropout prediction</subject><subject>Dropping out</subject><subject>educational data mining</subject><subject>Forests</subject><subject>higher education</subject><subject>I23</subject><subject>random forest</subject><subject>School dropouts</subject><subject>Secondary schools</subject><subject>Self concept</subject><subject>Self evaluation</subject><subject>student dropout</subject><subject>Students</subject><subject>Trees</subject><subject>University students</subject><issn>0021-4027</issn><issn>2366-049X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMoOKfPvgZ8jstXk_ZFmHPzg6GiDnwLMU1mx9bUpHX0v7dz4kDw6d4L53fO5QBwSvA5SUgyWLyVsUYUkwxhjMUe6FEmBMI8e90HPYwpQRxTeQiOYlx0JyOM9cDlWIdlCx-DzQtTF76E3sFZWXzaEIu6hVfBV76pI0RwCJ90mfsVnPhgYw2HVRW8Nu_H4MDpZbQnP7MPZpPxy-gGTR-ub0fDKTIskzUSlkhsdcqEdTlmkjorGCfMJizJTWqcFDq31mkjKHaG50xkmcAuk0JSKRnrg7Otbxf70XQfqIVvQtlFKsp5itNEyKRTDbYqE3yMwTpVhWKlQ6sIVpui1HdRalOU2hTVERdbYq2XtQ25nYem7Zad_T8k5VhIznaRc1sWPqp1Ef0v-4dRd5P7Z_YFGaeAkA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Behr, Andreas</creator><creator>Giese, Marco</creator><creator>Teguim K, Herve D.</creator><creator>Theune, Katja</creator><general>Walter de Gruyter GmbH</general><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20201201</creationdate><title>Early Prediction of University Dropouts - A Random Forest Approach</title><author>Behr, Andreas ; Giese, Marco ; Teguim K, Herve D. ; Theune, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>At risk populations</topic><topic>Classification</topic><topic>Colleges & universities</topic><topic>Counseling services</topic><topic>dropout prediction</topic><topic>Dropping out</topic><topic>educational data mining</topic><topic>Forests</topic><topic>higher education</topic><topic>I23</topic><topic>random forest</topic><topic>School dropouts</topic><topic>Secondary schools</topic><topic>Self concept</topic><topic>Self evaluation</topic><topic>student dropout</topic><topic>Students</topic><topic>Trees</topic><topic>University students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behr, Andreas</creatorcontrib><creatorcontrib>Giese, Marco</creatorcontrib><creatorcontrib>Teguim K, Herve D.</creatorcontrib><creatorcontrib>Theune, Katja</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Jahrbücher für Nationalökonomie und Statistik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behr, Andreas</au><au>Giese, Marco</au><au>Teguim K, Herve D.</au><au>Theune, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Prediction of University Dropouts - A Random Forest Approach</atitle><jtitle>Jahrbücher für Nationalökonomie und Statistik</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>240</volume><issue>6</issue><spage>743</spage><epage>789</epage><pages>743-789</pages><issn>0021-4027</issn><eissn>2366-049X</eissn><abstract>We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.</abstract><cop>Stuttgart</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/jbnst-2019-0006</doi><tpages>47</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-4027 |
ispartof | Jahrbücher für Nationalökonomie und Statistik, 2020-12, Vol.240 (6), p.743-789 |
issn | 0021-4027 2366-049X |
language | eng |
recordid | cdi_proquest_journals_2448085675 |
source | De Gruyter journals |
subjects | At risk populations Classification Colleges & universities Counseling services dropout prediction Dropping out educational data mining Forests higher education I23 random forest School dropouts Secondary schools Self concept Self evaluation student dropout Students Trees University students |
title | Early Prediction of University Dropouts - A Random Forest Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Prediction%20of%20University%20Dropouts%20-%20A%20Random%20Forest%20Approach&rft.jtitle=Jahrb%C3%BCcher%20f%C3%BCr%20National%C3%B6konomie%20und%20Statistik&rft.au=Behr,%20Andreas&rft.date=2020-12-01&rft.volume=240&rft.issue=6&rft.spage=743&rft.epage=789&rft.pages=743-789&rft.issn=0021-4027&rft.eissn=2366-049X&rft_id=info:doi/10.1515/jbnst-2019-0006&rft_dat=%3Cproquest_cross%3E2448085675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448085675&rft_id=info:pmid/&rfr_iscdi=true |