Early Prediction of University Dropouts - A Random Forest Approach

We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jahrbücher für Nationalökonomie und Statistik 2020-12, Vol.240 (6), p.743-789
Hauptverfasser: Behr, Andreas, Giese, Marco, Teguim K, Herve D., Theune, Katja
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 789
container_issue 6
container_start_page 743
container_title Jahrbücher für Nationalökonomie und Statistik
container_volume 240
creator Behr, Andreas
Giese, Marco
Teguim K, Herve D.
Theune, Katja
description We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.
doi_str_mv 10.1515/jbnst-2019-0006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2448085675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448085675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKfPvgZ8jstXk_ZFmHPzg6GiDnwLMU1mx9bUpHX0v7dz4kDw6d4L53fO5QBwSvA5SUgyWLyVsUYUkwxhjMUe6FEmBMI8e90HPYwpQRxTeQiOYlx0JyOM9cDlWIdlCx-DzQtTF76E3sFZWXzaEIu6hVfBV76pI0RwCJ90mfsVnPhgYw2HVRW8Nu_H4MDpZbQnP7MPZpPxy-gGTR-ub0fDKTIskzUSlkhsdcqEdTlmkjorGCfMJizJTWqcFDq31mkjKHaG50xkmcAuk0JSKRnrg7Otbxf70XQfqIVvQtlFKsp5itNEyKRTDbYqE3yMwTpVhWKlQ6sIVpui1HdRalOU2hTVERdbYq2XtQ25nYem7Zad_T8k5VhIznaRc1sWPqp1Ef0v-4dRd5P7Z_YFGaeAkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448085675</pqid></control><display><type>article</type><title>Early Prediction of University Dropouts - A Random Forest Approach</title><source>De Gruyter journals</source><creator>Behr, Andreas ; Giese, Marco ; Teguim K, Herve D. ; Theune, Katja</creator><creatorcontrib>Behr, Andreas ; Giese, Marco ; Teguim K, Herve D. ; Theune, Katja</creatorcontrib><description>We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.</description><identifier>ISSN: 0021-4027</identifier><identifier>EISSN: 2366-049X</identifier><identifier>DOI: 10.1515/jbnst-2019-0006</identifier><language>eng</language><publisher>Stuttgart: Walter de Gruyter GmbH</publisher><subject>At risk populations ; Classification ; Colleges &amp; universities ; Counseling services ; dropout prediction ; Dropping out ; educational data mining ; Forests ; higher education ; I23 ; random forest ; School dropouts ; Secondary schools ; Self concept ; Self evaluation ; student dropout ; Students ; Trees ; University students</subject><ispartof>Jahrbücher für Nationalökonomie und Statistik, 2020-12, Vol.240 (6), p.743-789</ispartof><rights>Alle Dokumente genießen nach § 4 und § 87 a ff UrhG urheberrechtlichen Schutz. Eine Bearbeitung oder Vervielfältigung ist nicht zulässig. www.genios.de</rights><rights>2020 Oldenbourg Wissenschaftsverlag GmbH, Published by De Gruyter Oldenbourg, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</citedby><cites>FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jbnst-2019-0006/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jbnst-2019-0006/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>312,314,776,780,787,27901,27902,66497,68281</link.rule.ids><backlink>$$Uhttps://www.wiso-net.de/docPreview/exlibris/JFNS__jbnst-2019-0006$$DView content in WISO$$Hfree_for_read</backlink></links><search><creatorcontrib>Behr, Andreas</creatorcontrib><creatorcontrib>Giese, Marco</creatorcontrib><creatorcontrib>Teguim K, Herve D.</creatorcontrib><creatorcontrib>Theune, Katja</creatorcontrib><title>Early Prediction of University Dropouts - A Random Forest Approach</title><title>Jahrbücher für Nationalökonomie und Statistik</title><description>We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.</description><subject>At risk populations</subject><subject>Classification</subject><subject>Colleges &amp; universities</subject><subject>Counseling services</subject><subject>dropout prediction</subject><subject>Dropping out</subject><subject>educational data mining</subject><subject>Forests</subject><subject>higher education</subject><subject>I23</subject><subject>random forest</subject><subject>School dropouts</subject><subject>Secondary schools</subject><subject>Self concept</subject><subject>Self evaluation</subject><subject>student dropout</subject><subject>Students</subject><subject>Trees</subject><subject>University students</subject><issn>0021-4027</issn><issn>2366-049X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kN1LwzAUxYMoOKfPvgZ8jstXk_ZFmHPzg6GiDnwLMU1mx9bUpHX0v7dz4kDw6d4L53fO5QBwSvA5SUgyWLyVsUYUkwxhjMUe6FEmBMI8e90HPYwpQRxTeQiOYlx0JyOM9cDlWIdlCx-DzQtTF76E3sFZWXzaEIu6hVfBV76pI0RwCJ90mfsVnPhgYw2HVRW8Nu_H4MDpZbQnP7MPZpPxy-gGTR-ub0fDKTIskzUSlkhsdcqEdTlmkjorGCfMJizJTWqcFDq31mkjKHaG50xkmcAuk0JSKRnrg7Otbxf70XQfqIVvQtlFKsp5itNEyKRTDbYqE3yMwTpVhWKlQ6sIVpui1HdRalOU2hTVERdbYq2XtQ25nYem7Zad_T8k5VhIznaRc1sWPqp1Ef0v-4dRd5P7Z_YFGaeAkA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Behr, Andreas</creator><creator>Giese, Marco</creator><creator>Teguim K, Herve D.</creator><creator>Theune, Katja</creator><general>Walter de Gruyter GmbH</general><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20201201</creationdate><title>Early Prediction of University Dropouts - A Random Forest Approach</title><author>Behr, Andreas ; Giese, Marco ; Teguim K, Herve D. ; Theune, Katja</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6e170ea836efd0372fe63413e535dc8cf76adeefac620fc4d369960f976727733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>At risk populations</topic><topic>Classification</topic><topic>Colleges &amp; universities</topic><topic>Counseling services</topic><topic>dropout prediction</topic><topic>Dropping out</topic><topic>educational data mining</topic><topic>Forests</topic><topic>higher education</topic><topic>I23</topic><topic>random forest</topic><topic>School dropouts</topic><topic>Secondary schools</topic><topic>Self concept</topic><topic>Self evaluation</topic><topic>student dropout</topic><topic>Students</topic><topic>Trees</topic><topic>University students</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Behr, Andreas</creatorcontrib><creatorcontrib>Giese, Marco</creatorcontrib><creatorcontrib>Teguim K, Herve D.</creatorcontrib><creatorcontrib>Theune, Katja</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Jahrbücher für Nationalökonomie und Statistik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Behr, Andreas</au><au>Giese, Marco</au><au>Teguim K, Herve D.</au><au>Theune, Katja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early Prediction of University Dropouts - A Random Forest Approach</atitle><jtitle>Jahrbücher für Nationalökonomie und Statistik</jtitle><date>2020-12-01</date><risdate>2020</risdate><volume>240</volume><issue>6</issue><spage>743</spage><epage>789</epage><pages>743-789</pages><issn>0021-4027</issn><eissn>2366-049X</eissn><abstract>We predict university dropout using random forests based on conditional inference trees and on a broad German data set covering a wide range of aspects of student life and study courses. We model the dropout decision as a binary classification (graduate or dropout) and focus on very early prediction of student dropout by stepwise modeling students' transition from school (pre-study) over the study-decision phase (decision phase) to the first semesters at university (early study phase). We evaluate how predictive performance changes over the three models, and observe a substantially increased performance when including variables from the first study experiences, resulting in an AUC (area under the curve) of 0.86. Important predictors are the final grade at secondary school, and also determinants associated with student satisfaction and their subjective academic self-concept and self-assessment. A direct outcome of this research is the provision of information to universities wishing to implement early warning systems and more personalized counseling services to support students at risk of dropping out during an early stage of study.</abstract><cop>Stuttgart</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/jbnst-2019-0006</doi><tpages>47</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-4027
ispartof Jahrbücher für Nationalökonomie und Statistik, 2020-12, Vol.240 (6), p.743-789
issn 0021-4027
2366-049X
language eng
recordid cdi_proquest_journals_2448085675
source De Gruyter journals
subjects At risk populations
Classification
Colleges & universities
Counseling services
dropout prediction
Dropping out
educational data mining
Forests
higher education
I23
random forest
School dropouts
Secondary schools
Self concept
Self evaluation
student dropout
Students
Trees
University students
title Early Prediction of University Dropouts - A Random Forest Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20Prediction%20of%20University%20Dropouts%20-%20A%20Random%20Forest%20Approach&rft.jtitle=Jahrb%C3%BCcher%20f%C3%BCr%20National%C3%B6konomie%20und%20Statistik&rft.au=Behr,%20Andreas&rft.date=2020-12-01&rft.volume=240&rft.issue=6&rft.spage=743&rft.epage=789&rft.pages=743-789&rft.issn=0021-4027&rft.eissn=2366-049X&rft_id=info:doi/10.1515/jbnst-2019-0006&rft_dat=%3Cproquest_cross%3E2448085675%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448085675&rft_id=info:pmid/&rfr_iscdi=true