Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning
Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on predic...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Information and Systems 2020/10/01, Vol.E103.D(10), pp.2237-2240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2240 |
---|---|
container_issue | 10 |
container_start_page | 2237 |
container_title | IEICE Transactions on Information and Systems |
container_volume | E103.D |
creator | XING, Danlei WU, Fei SUN, Ying JING, Xiao-Yuan |
description | Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines. |
doi_str_mv | 10.1587/transinf.2020EDL8044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447994315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447994315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-5b52f434dbebb34376642745721a8ea3ac19ea0887419b03b79232a5064402f83</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwBhwicQ74N3GOqGkBKRKVAmfLcTfFUZsU26nE25OopfS0e5hvdnYQuif4kQiZPgWnW2_b-pFiiud5ITHnF2hCUi5iwhJyiSY4I0ksBaPX6Mb7BmMiKRETVM5c5328dF0DJkQ51ONYOlhZE2zXRnuroxK2Ni77Hbi99bCKcuuNs1vb6mD3EC1Ah95BVIB2rW3Xt-iq1hsPd8c5RZ-L-cfsNS7eX95mz0VsRCJDLCpBa874qoKqYpylScLpEDmlREvQTBuSgcZSppxkFWZVmlFGtcAJ55jWkk3Rw8F357rvHnxQTde7djipKOdplnFGxKDiB5UZP3VQq92QXbsfRbAa61N_9amz-gasPGCND3oNJ0i7YM0G_qE5wUzlo9lxO3M5qc2Xdgpa9gtr94H1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447994315</pqid></control><display><type>article</type><title>Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>XING, Danlei ; WU, Fei ; SUN, Ying ; JING, Xiao-Yuan</creator><creatorcontrib>XING, Danlei ; WU, Fei ; SUN, Ying ; JING, Xiao-Yuan</creatorcontrib><description>Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.</description><identifier>ISSN: 0916-8532</identifier><identifier>EISSN: 1745-1361</identifier><identifier>DOI: 10.1587/transinf.2020EDL8044</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>cross-project defection prediction ; discriminative feature learning ; Knowledge management ; Learning ; Neural networks ; Performance prediction ; Prediction models ; semi-supervised learning</subject><ispartof>IEICE Transactions on Information and Systems, 2020/10/01, Vol.E103.D(10), pp.2237-2240</ispartof><rights>2020 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-5b52f434dbebb34376642745721a8ea3ac19ea0887419b03b79232a5064402f83</citedby><cites>FETCH-LOGICAL-c568t-5b52f434dbebb34376642745721a8ea3ac19ea0887419b03b79232a5064402f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>XING, Danlei</creatorcontrib><creatorcontrib>WU, Fei</creatorcontrib><creatorcontrib>SUN, Ying</creatorcontrib><creatorcontrib>JING, Xiao-Yuan</creatorcontrib><title>Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning</title><title>IEICE Transactions on Information and Systems</title><addtitle>IEICE Trans. Inf. & Syst.</addtitle><description>Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.</description><subject>cross-project defection prediction</subject><subject>discriminative feature learning</subject><subject>Knowledge management</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Performance prediction</subject><subject>Prediction models</subject><subject>semi-supervised learning</subject><issn>0916-8532</issn><issn>1745-1361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwBhwicQ74N3GOqGkBKRKVAmfLcTfFUZsU26nE25OopfS0e5hvdnYQuif4kQiZPgWnW2_b-pFiiud5ITHnF2hCUi5iwhJyiSY4I0ksBaPX6Mb7BmMiKRETVM5c5328dF0DJkQ51ONYOlhZE2zXRnuroxK2Ni77Hbi99bCKcuuNs1vb6mD3EC1Ah95BVIB2rW3Xt-iq1hsPd8c5RZ-L-cfsNS7eX95mz0VsRCJDLCpBa874qoKqYpylScLpEDmlREvQTBuSgcZSppxkFWZVmlFGtcAJ55jWkk3Rw8F357rvHnxQTde7djipKOdplnFGxKDiB5UZP3VQq92QXbsfRbAa61N_9amz-gasPGCND3oNJ0i7YM0G_qE5wUzlo9lxO3M5qc2Xdgpa9gtr94H1</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>XING, Danlei</creator><creator>WU, Fei</creator><creator>SUN, Ying</creator><creator>JING, Xiao-Yuan</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201001</creationdate><title>Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning</title><author>XING, Danlei ; WU, Fei ; SUN, Ying ; JING, Xiao-Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-5b52f434dbebb34376642745721a8ea3ac19ea0887419b03b79232a5064402f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cross-project defection prediction</topic><topic>discriminative feature learning</topic><topic>Knowledge management</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Performance prediction</topic><topic>Prediction models</topic><topic>semi-supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XING, Danlei</creatorcontrib><creatorcontrib>WU, Fei</creatorcontrib><creatorcontrib>SUN, Ying</creatorcontrib><creatorcontrib>JING, Xiao-Yuan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Information and Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XING, Danlei</au><au>WU, Fei</au><au>SUN, Ying</au><au>JING, Xiao-Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning</atitle><jtitle>IEICE Transactions on Information and Systems</jtitle><addtitle>IEICE Trans. Inf. & Syst.</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>E103.D</volume><issue>10</issue><spage>2237</spage><epage>2240</epage><pages>2237-2240</pages><issn>0916-8532</issn><eissn>1745-1361</eissn><abstract>Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transinf.2020EDL8044</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8532 |
ispartof | IEICE Transactions on Information and Systems, 2020/10/01, Vol.E103.D(10), pp.2237-2240 |
issn | 0916-8532 1745-1361 |
language | eng |
recordid | cdi_proquest_journals_2447994315 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | cross-project defection prediction discriminative feature learning Knowledge management Learning Neural networks Performance prediction Prediction models semi-supervised learning |
title | Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Project%20Defect%20Prediction%20via%20Semi-Supervised%20Discriminative%20Feature%20Learning&rft.jtitle=IEICE%20Transactions%20on%20Information%20and%20Systems&rft.au=XING,%20Danlei&rft.date=2020-10-01&rft.volume=E103.D&rft.issue=10&rft.spage=2237&rft.epage=2240&rft.pages=2237-2240&rft.issn=0916-8532&rft.eissn=1745-1361&rft_id=info:doi/10.1587/transinf.2020EDL8044&rft_dat=%3Cproquest_cross%3E2447994315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447994315&rft_id=info:pmid/&rfr_iscdi=true |