Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System

An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be ind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-10, Vol.30 (40), p.n/a, Article 2002325
Hauptverfasser: Qiu, Weijie, Huang, Yulong, Kong, Ling‐An, Chen, Yang, Liu, Wanrong, Wang, Zhen, Sun, Jia, Wan, Qing, Cho, Jeong Ho, Yang, Junliang, Gao, Yongli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 30
creator Qiu, Weijie
Huang, Yulong
Kong, Ling‐An
Chen, Yang
Liu, Wanrong
Wang, Zhen
Sun, Jia
Wan, Qing
Cho, Jeong Ho
Yang, Junliang
Gao, Yongli
description An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems. Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.
doi_str_mv 10.1002/adfm.202002325
format Article
fullrecord <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2447782786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447782786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhSMEEqWwMkdiRCn-ieNkrAItFa068CPEEjnuteQqiYvtCnXjEXhGngRXrcoIi-8Zznd97omiS4wGGCFyIxaqHRBEgqaEHUU9nOEsoYjkxweNX0-jM-eWCGHOadqLHuYrb6AB6a3ptIwn3ffn11iE522r5vEMWm9F57TzxrpYGRsPrddKSy2a-EU7bbr4ceM8tOfRiRKNg4v97EfPo7un8j6ZzseTcjhNJMWcJZIwgUhRAOUEaspSAB4i4xzLmrG6yIsig5QqDCJXC5BUqYIBw1JxQRQpaD-62u1dWfO-BuerpVnbLnxZkTTlPCc8z4JrsHNJa5yzoKqV1a2wmwqjaltYtS2sOhQWgHwHfEBtlJMaOgkHCCHEGKc8p0EhXGovfDi9NOvOB_T6_2hwF3u3bmDzR6xqeDua_Yb8AcGNkp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447782786</pqid></control><display><type>article</type><title>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Qiu, Weijie ; Huang, Yulong ; Kong, Ling‐An ; Chen, Yang ; Liu, Wanrong ; Wang, Zhen ; Sun, Jia ; Wan, Qing ; Cho, Jeong Ho ; Yang, Junliang ; Gao, Yongli</creator><creatorcontrib>Qiu, Weijie ; Huang, Yulong ; Kong, Ling‐An ; Chen, Yang ; Liu, Wanrong ; Wang, Zhen ; Sun, Jia ; Wan, Qing ; Cho, Jeong Ho ; Yang, Junliang ; Gao, Yongli</creatorcontrib><description>An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems. Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202002325</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Aluminum oxide ; Artificial neural networks ; Artificial vision ; charge trapping ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Computer simulation ; Electric fields ; Eye (anatomy) ; In‐Ga‐Zn‐O memtransistors ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience &amp; Nanotechnology ; Object recognition ; Optoelectronics ; Photoconductivity ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Room temperature ; Science &amp; Technology ; Science &amp; Technology - Other Topics ; steep subthreshold swing ; Technology ; Vision systems</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), p.n/a, Article 2002325</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>64</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557378300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</citedby><cites>FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</cites><orcidid>0000-0003-4423-8128 ; 0000-0002-1030-9920 ; 0000-0002-4261-775X ; 0000-0001-9765-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202002325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202002325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,28257,45583,45584</link.rule.ids></links><search><creatorcontrib>Qiu, Weijie</creatorcontrib><creatorcontrib>Huang, Yulong</creatorcontrib><creatorcontrib>Kong, Ling‐An</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Liu, Wanrong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jia</creatorcontrib><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Yang, Junliang</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><title>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems. Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.</description><subject>Aluminum oxide</subject><subject>Artificial neural networks</subject><subject>Artificial vision</subject><subject>charge trapping</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Eye (anatomy)</subject><subject>In‐Ga‐Zn‐O memtransistors</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience &amp; Nanotechnology</subject><subject>Object recognition</subject><subject>Optoelectronics</subject><subject>Photoconductivity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Room temperature</subject><subject>Science &amp; Technology</subject><subject>Science &amp; Technology - Other Topics</subject><subject>steep subthreshold swing</subject><subject>Technology</subject><subject>Vision systems</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkL1OwzAUhSMEEqWwMkdiRCn-ieNkrAItFa068CPEEjnuteQqiYvtCnXjEXhGngRXrcoIi-8Zznd97omiS4wGGCFyIxaqHRBEgqaEHUU9nOEsoYjkxweNX0-jM-eWCGHOadqLHuYrb6AB6a3ptIwn3ffn11iE522r5vEMWm9F57TzxrpYGRsPrddKSy2a-EU7bbr4ceM8tOfRiRKNg4v97EfPo7un8j6ZzseTcjhNJMWcJZIwgUhRAOUEaspSAB4i4xzLmrG6yIsig5QqDCJXC5BUqYIBw1JxQRQpaD-62u1dWfO-BuerpVnbLnxZkTTlPCc8z4JrsHNJa5yzoKqV1a2wmwqjaltYtS2sOhQWgHwHfEBtlJMaOgkHCCHEGKc8p0EhXGovfDi9NOvOB_T6_2hwF3u3bmDzR6xqeDua_Yb8AcGNkp8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Qiu, Weijie</creator><creator>Huang, Yulong</creator><creator>Kong, Ling‐An</creator><creator>Chen, Yang</creator><creator>Liu, Wanrong</creator><creator>Wang, Zhen</creator><creator>Sun, Jia</creator><creator>Wan, Qing</creator><creator>Cho, Jeong Ho</creator><creator>Yang, Junliang</creator><creator>Gao, Yongli</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4423-8128</orcidid><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0002-4261-775X</orcidid><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid></search><sort><creationdate>20201001</creationdate><title>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</title><author>Qiu, Weijie ; Huang, Yulong ; Kong, Ling‐An ; Chen, Yang ; Liu, Wanrong ; Wang, Zhen ; Sun, Jia ; Wan, Qing ; Cho, Jeong Ho ; Yang, Junliang ; Gao, Yongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Artificial neural networks</topic><topic>Artificial vision</topic><topic>charge trapping</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Eye (anatomy)</topic><topic>In‐Ga‐Zn‐O memtransistors</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience &amp; Nanotechnology</topic><topic>Object recognition</topic><topic>Optoelectronics</topic><topic>Photoconductivity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Room temperature</topic><topic>Science &amp; Technology</topic><topic>Science &amp; Technology - Other Topics</topic><topic>steep subthreshold swing</topic><topic>Technology</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Weijie</creatorcontrib><creatorcontrib>Huang, Yulong</creatorcontrib><creatorcontrib>Kong, Ling‐An</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Liu, Wanrong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jia</creatorcontrib><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Yang, Junliang</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Weijie</au><au>Huang, Yulong</au><au>Kong, Ling‐An</au><au>Chen, Yang</au><au>Liu, Wanrong</au><au>Wang, Zhen</au><au>Sun, Jia</au><au>Wan, Qing</au><au>Cho, Jeong Ho</au><au>Yang, Junliang</au><au>Gao, Yongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><epage>n/a</epage><artnum>2002325</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems. Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202002325</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4423-8128</orcidid><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0002-4261-775X</orcidid><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-10, Vol.30 (40), p.n/a, Article 2002325
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2447782786
source Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Aluminum oxide
Artificial neural networks
Artificial vision
charge trapping
Chemistry
Chemistry, Multidisciplinary
Chemistry, Physical
Computer simulation
Electric fields
Eye (anatomy)
In‐Ga‐Zn‐O memtransistors
Materials Science
Materials Science, Multidisciplinary
Nanoscience & Nanotechnology
Object recognition
Optoelectronics
Photoconductivity
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Room temperature
Science & Technology
Science & Technology - Other Topics
steep subthreshold swing
Technology
Vision systems
title Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T06%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optoelectronic%20In%E2%80%90Ga%E2%80%90Zn%E2%80%90O%20Memtransistors%20for%20Artificial%20Vision%20System&rft.jtitle=Advanced%20functional%20materials&rft.au=Qiu,%20Weijie&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.epage=n/a&rft.artnum=2002325&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202002325&rft_dat=%3Cproquest_webof%3E2447782786%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447782786&rft_id=info:pmid/&rfr_iscdi=true