Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System
An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be ind...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-10, Vol.30 (40), p.n/a, Article 2002325 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Qiu, Weijie Huang, Yulong Kong, Ling‐An Chen, Yang Liu, Wanrong Wang, Zhen Sun, Jia Wan, Qing Cho, Jeong Ho Yang, Junliang Gao, Yongli |
description | An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems.
Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved. |
doi_str_mv | 10.1002/adfm.202002325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2447782786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447782786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</originalsourceid><addsrcrecordid>eNqNkL1OwzAUhSMEEqWwMkdiRCn-ieNkrAItFa068CPEEjnuteQqiYvtCnXjEXhGngRXrcoIi-8Zznd97omiS4wGGCFyIxaqHRBEgqaEHUU9nOEsoYjkxweNX0-jM-eWCGHOadqLHuYrb6AB6a3ptIwn3ffn11iE522r5vEMWm9F57TzxrpYGRsPrddKSy2a-EU7bbr4ceM8tOfRiRKNg4v97EfPo7un8j6ZzseTcjhNJMWcJZIwgUhRAOUEaspSAB4i4xzLmrG6yIsig5QqDCJXC5BUqYIBw1JxQRQpaD-62u1dWfO-BuerpVnbLnxZkTTlPCc8z4JrsHNJa5yzoKqV1a2wmwqjaltYtS2sOhQWgHwHfEBtlJMaOgkHCCHEGKc8p0EhXGovfDi9NOvOB_T6_2hwF3u3bmDzR6xqeDua_Yb8AcGNkp8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447782786</pqid></control><display><type>article</type><title>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</title><source>Access via Wiley Online Library</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Qiu, Weijie ; Huang, Yulong ; Kong, Ling‐An ; Chen, Yang ; Liu, Wanrong ; Wang, Zhen ; Sun, Jia ; Wan, Qing ; Cho, Jeong Ho ; Yang, Junliang ; Gao, Yongli</creator><creatorcontrib>Qiu, Weijie ; Huang, Yulong ; Kong, Ling‐An ; Chen, Yang ; Liu, Wanrong ; Wang, Zhen ; Sun, Jia ; Wan, Qing ; Cho, Jeong Ho ; Yang, Junliang ; Gao, Yongli</creatorcontrib><description>An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems.
Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202002325</identifier><language>eng</language><publisher>WEINHEIM: Wiley</publisher><subject>Aluminum oxide ; Artificial neural networks ; Artificial vision ; charge trapping ; Chemistry ; Chemistry, Multidisciplinary ; Chemistry, Physical ; Computer simulation ; Electric fields ; Eye (anatomy) ; In‐Ga‐Zn‐O memtransistors ; Materials Science ; Materials Science, Multidisciplinary ; Nanoscience & Nanotechnology ; Object recognition ; Optoelectronics ; Photoconductivity ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Room temperature ; Science & Technology ; Science & Technology - Other Topics ; steep subthreshold swing ; Technology ; Vision systems</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), p.n/a, Article 2002325</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>64</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000557378300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</citedby><cites>FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</cites><orcidid>0000-0003-4423-8128 ; 0000-0002-1030-9920 ; 0000-0002-4261-775X ; 0000-0001-9765-5246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202002325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202002325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,28257,45583,45584</link.rule.ids></links><search><creatorcontrib>Qiu, Weijie</creatorcontrib><creatorcontrib>Huang, Yulong</creatorcontrib><creatorcontrib>Kong, Ling‐An</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Liu, Wanrong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jia</creatorcontrib><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Yang, Junliang</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><title>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</title><title>Advanced functional materials</title><addtitle>ADV FUNCT MATER</addtitle><description>An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems.
Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.</description><subject>Aluminum oxide</subject><subject>Artificial neural networks</subject><subject>Artificial vision</subject><subject>charge trapping</subject><subject>Chemistry</subject><subject>Chemistry, Multidisciplinary</subject><subject>Chemistry, Physical</subject><subject>Computer simulation</subject><subject>Electric fields</subject><subject>Eye (anatomy)</subject><subject>In‐Ga‐Zn‐O memtransistors</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Nanoscience & Nanotechnology</subject><subject>Object recognition</subject><subject>Optoelectronics</subject><subject>Photoconductivity</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Room temperature</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>steep subthreshold swing</subject><subject>Technology</subject><subject>Vision systems</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkL1OwzAUhSMEEqWwMkdiRCn-ieNkrAItFa068CPEEjnuteQqiYvtCnXjEXhGngRXrcoIi-8Zznd97omiS4wGGCFyIxaqHRBEgqaEHUU9nOEsoYjkxweNX0-jM-eWCGHOadqLHuYrb6AB6a3ptIwn3ffn11iE522r5vEMWm9F57TzxrpYGRsPrddKSy2a-EU7bbr4ceM8tOfRiRKNg4v97EfPo7un8j6ZzseTcjhNJMWcJZIwgUhRAOUEaspSAB4i4xzLmrG6yIsig5QqDCJXC5BUqYIBw1JxQRQpaD-62u1dWfO-BuerpVnbLnxZkTTlPCc8z4JrsHNJa5yzoKqV1a2wmwqjaltYtS2sOhQWgHwHfEBtlJMaOgkHCCHEGKc8p0EhXGovfDi9NOvOB_T6_2hwF3u3bmDzR6xqeDua_Yb8AcGNkp8</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Qiu, Weijie</creator><creator>Huang, Yulong</creator><creator>Kong, Ling‐An</creator><creator>Chen, Yang</creator><creator>Liu, Wanrong</creator><creator>Wang, Zhen</creator><creator>Sun, Jia</creator><creator>Wan, Qing</creator><creator>Cho, Jeong Ho</creator><creator>Yang, Junliang</creator><creator>Gao, Yongli</creator><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4423-8128</orcidid><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0002-4261-775X</orcidid><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid></search><sort><creationdate>20201001</creationdate><title>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</title><author>Qiu, Weijie ; Huang, Yulong ; Kong, Ling‐An ; Chen, Yang ; Liu, Wanrong ; Wang, Zhen ; Sun, Jia ; Wan, Qing ; Cho, Jeong Ho ; Yang, Junliang ; Gao, Yongli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-c25a0299e372eb354ee7023181cb55b98996e43f1ea8fdec3ff95e51cf7a2f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Artificial neural networks</topic><topic>Artificial vision</topic><topic>charge trapping</topic><topic>Chemistry</topic><topic>Chemistry, Multidisciplinary</topic><topic>Chemistry, Physical</topic><topic>Computer simulation</topic><topic>Electric fields</topic><topic>Eye (anatomy)</topic><topic>In‐Ga‐Zn‐O memtransistors</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Nanoscience & Nanotechnology</topic><topic>Object recognition</topic><topic>Optoelectronics</topic><topic>Photoconductivity</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Room temperature</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>steep subthreshold swing</topic><topic>Technology</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Weijie</creatorcontrib><creatorcontrib>Huang, Yulong</creatorcontrib><creatorcontrib>Kong, Ling‐An</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Liu, Wanrong</creatorcontrib><creatorcontrib>Wang, Zhen</creatorcontrib><creatorcontrib>Sun, Jia</creatorcontrib><creatorcontrib>Wan, Qing</creatorcontrib><creatorcontrib>Cho, Jeong Ho</creatorcontrib><creatorcontrib>Yang, Junliang</creatorcontrib><creatorcontrib>Gao, Yongli</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Weijie</au><au>Huang, Yulong</au><au>Kong, Ling‐An</au><au>Chen, Yang</au><au>Liu, Wanrong</au><au>Wang, Zhen</au><au>Sun, Jia</au><au>Wan, Qing</au><au>Cho, Jeong Ho</au><au>Yang, Junliang</au><au>Gao, Yongli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System</atitle><jtitle>Advanced functional materials</jtitle><stitle>ADV FUNCT MATER</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><epage>n/a</epage><artnum>2002325</artnum><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>An artificial vision system that can simulate the visual functions of human eyes is required for biological robots. Here, In‐Ga‐Zn‐O memtransistors using a naturally oxidized Al2O3 and an ion gel as a common gate stacking dielectric is proposed. Positive charge trapping in the Al2O3 layer can be induced by modulating the gate voltage, which causes the back sweep subthreshold swing (SS) of the device to break the physical limit (≥60 mV per decade at room temperature), and the minimum SS is as low as 26.4 mV per decade. In addition, photogenerated charges in the device are captured at the In‐Ga‐Zn‐O channel/ion gel interface due to the superposition of the additional electric field generated by positive charges trapped in the Al2O3 layer and the external gate electric field. Thus, persistent photoconductivity is observed in the In‐Ga‐Zn‐O memtransistors. Finally, by employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array (ARA) and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of ARA for the image preprocessing is achieved. This study provides a new strategy for the realization of artificial vision systems.
Optoelectronic In‐Ga‐Zn‐O memtransistors with a sub−60 mV per decade switching is fabricated. By employing the optoelectronic memristive functions of In‐Ga‐Zn‐O memtransistors, an artificial vision system based on artificial retinal array and artificial neural network is proposed. An obvious improvement in the recognition rate and efficiency with the use of artificial retinal array for the image preprocessing is achieved.</abstract><cop>WEINHEIM</cop><pub>Wiley</pub><doi>10.1002/adfm.202002325</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4423-8128</orcidid><orcidid>https://orcid.org/0000-0002-1030-9920</orcidid><orcidid>https://orcid.org/0000-0002-4261-775X</orcidid><orcidid>https://orcid.org/0000-0001-9765-5246</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-10, Vol.30 (40), p.n/a, Article 2002325 |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2447782786 |
source | Access via Wiley Online Library; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Aluminum oxide Artificial neural networks Artificial vision charge trapping Chemistry Chemistry, Multidisciplinary Chemistry, Physical Computer simulation Electric fields Eye (anatomy) In‐Ga‐Zn‐O memtransistors Materials Science Materials Science, Multidisciplinary Nanoscience & Nanotechnology Object recognition Optoelectronics Photoconductivity Physical Sciences Physics Physics, Applied Physics, Condensed Matter Room temperature Science & Technology Science & Technology - Other Topics steep subthreshold swing Technology Vision systems |
title | Optoelectronic In‐Ga‐Zn‐O Memtransistors for Artificial Vision System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T06%3A30%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optoelectronic%20In%E2%80%90Ga%E2%80%90Zn%E2%80%90O%20Memtransistors%20for%20Artificial%20Vision%20System&rft.jtitle=Advanced%20functional%20materials&rft.au=Qiu,%20Weijie&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.epage=n/a&rft.artnum=2002325&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202002325&rft_dat=%3Cproquest_webof%3E2447782786%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447782786&rft_id=info:pmid/&rfr_iscdi=true |