Cross‐Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors
In this article, highly sensitive differential pressure sensors based on free‐standing membranes of cross‐linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity o...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-10, Vol.30 (40), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Schlicke, Hendrik Kunze, Svenja Rebber, Matthias Schulz, Norbert Riekeberg, Svenja Trieu, Hoc Khiem Vossmeyer, Tobias |
description | In this article, highly sensitive differential pressure sensors based on free‐standing membranes of cross‐linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity of these nanometer‐thin composites enable the fabrication of sensors achieving high sensitivities exceeding 10−3 mbar−1 while maintaining an overall small membrane area. Furthermore, by combining micro‐bulge tests with atomic force microscopy and in situ resistance measurements the membranes’ electromechanical responses are studied through precise observation of the concomitant changes of the membranes’ topography. The study demonstrates the high potential of free‐standing nanoparticle composites for the fabrication of highly sensitive force and pressure sensors and introduces a unique and powerful method for the electromechanical investigation of these materials.
The fabrication of free‐standing membranes consisting of inorganic/organic nanoparticle composites allows for coupling their optoelectronic properties to their mechanical characteristics. In this article, highly sensitive resistive differential pressure sensors benefiting from the elasticity and tunneling‐based strain‐sensitivity of these new materials are reported. Further, a unique and powerful technique for their electromechanical characterization is presented. |
doi_str_mv | 10.1002/adfm.202003381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447782768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447782768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-671094a5b36b5aa947ac50f3e17fbf581773fb812e39cb3a881c4961895f03423</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSewsq0BbpBaQAAlWlpOOISWJg90Wdccn8I18CQlFZclqRjP3zOMidErJgBLCzvXcVANGGCGcS7qHejSmccAJk_u7nD4eoiPvF4RQIXjYQ0-ps95_fXxOi_oV5nhsyzm-1rVttFsWeQk4tVVjfbEEPIMqc7oGj7XHk-L5pdzgO6jbXrEGfOvA-5WDn5J1_hgdGF16OPmNffQwurxPJ8H0ZnyVDqdBziNBg1hQkoQ6ynicRVonodB5RAwHKkxmItndaTJJGfAkz7iWkuZhElOZRIbwkPE-OtvObZx9W4FfqoVdubpdqVgYCiGZiGWrGmxVefevA6MaV1TabRQlqrNPdfapnX0tkGyB96KEzT9qNbwYzf7YbzLQdIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447782768</pqid></control><display><type>article</type><title>Cross‐Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors</title><source>Access via Wiley Online Library</source><creator>Schlicke, Hendrik ; Kunze, Svenja ; Rebber, Matthias ; Schulz, Norbert ; Riekeberg, Svenja ; Trieu, Hoc Khiem ; Vossmeyer, Tobias</creator><creatorcontrib>Schlicke, Hendrik ; Kunze, Svenja ; Rebber, Matthias ; Schulz, Norbert ; Riekeberg, Svenja ; Trieu, Hoc Khiem ; Vossmeyer, Tobias</creatorcontrib><description>In this article, highly sensitive differential pressure sensors based on free‐standing membranes of cross‐linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity of these nanometer‐thin composites enable the fabrication of sensors achieving high sensitivities exceeding 10−3 mbar−1 while maintaining an overall small membrane area. Furthermore, by combining micro‐bulge tests with atomic force microscopy and in situ resistance measurements the membranes’ electromechanical responses are studied through precise observation of the concomitant changes of the membranes’ topography. The study demonstrates the high potential of free‐standing nanoparticle composites for the fabrication of highly sensitive force and pressure sensors and introduces a unique and powerful method for the electromechanical investigation of these materials.
The fabrication of free‐standing membranes consisting of inorganic/organic nanoparticle composites allows for coupling their optoelectronic properties to their mechanical characteristics. In this article, highly sensitive resistive differential pressure sensors benefiting from the elasticity and tunneling‐based strain‐sensitivity of these new materials are reported. Further, a unique and powerful technique for their electromechanical characterization is presented.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202003381</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atomic force microscopy ; Composite materials ; Diaphragms ; Differential pressure ; Gold ; gold nanoparticles ; Materials science ; Membranes ; MEMS ; nanoparticle composites ; Nanoparticles ; NEMS ; Pressure sensors ; Sensitivity ; Sensors ; Strain ; Transducers</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), p.n/a</ispartof><rights>2020 The Authors. Published by Wiley‐VCH GmbH</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-671094a5b36b5aa947ac50f3e17fbf581773fb812e39cb3a881c4961895f03423</citedby><cites>FETCH-LOGICAL-c3571-671094a5b36b5aa947ac50f3e17fbf581773fb812e39cb3a881c4961895f03423</cites><orcidid>0000-0002-6977-4042</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202003381$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202003381$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schlicke, Hendrik</creatorcontrib><creatorcontrib>Kunze, Svenja</creatorcontrib><creatorcontrib>Rebber, Matthias</creatorcontrib><creatorcontrib>Schulz, Norbert</creatorcontrib><creatorcontrib>Riekeberg, Svenja</creatorcontrib><creatorcontrib>Trieu, Hoc Khiem</creatorcontrib><creatorcontrib>Vossmeyer, Tobias</creatorcontrib><title>Cross‐Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors</title><title>Advanced functional materials</title><description>In this article, highly sensitive differential pressure sensors based on free‐standing membranes of cross‐linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity of these nanometer‐thin composites enable the fabrication of sensors achieving high sensitivities exceeding 10−3 mbar−1 while maintaining an overall small membrane area. Furthermore, by combining micro‐bulge tests with atomic force microscopy and in situ resistance measurements the membranes’ electromechanical responses are studied through precise observation of the concomitant changes of the membranes’ topography. The study demonstrates the high potential of free‐standing nanoparticle composites for the fabrication of highly sensitive force and pressure sensors and introduces a unique and powerful method for the electromechanical investigation of these materials.
The fabrication of free‐standing membranes consisting of inorganic/organic nanoparticle composites allows for coupling their optoelectronic properties to their mechanical characteristics. In this article, highly sensitive resistive differential pressure sensors benefiting from the elasticity and tunneling‐based strain‐sensitivity of these new materials are reported. Further, a unique and powerful technique for their electromechanical characterization is presented.</description><subject>Atomic force microscopy</subject><subject>Composite materials</subject><subject>Diaphragms</subject><subject>Differential pressure</subject><subject>Gold</subject><subject>gold nanoparticles</subject><subject>Materials science</subject><subject>Membranes</subject><subject>MEMS</subject><subject>nanoparticle composites</subject><subject>Nanoparticles</subject><subject>NEMS</subject><subject>Pressure sensors</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Strain</subject><subject>Transducers</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkMtOwzAQRS0EEqWwZW2JdYofSewsq0BbpBaQAAlWlpOOISWJg90Wdccn8I18CQlFZclqRjP3zOMidErJgBLCzvXcVANGGCGcS7qHejSmccAJk_u7nD4eoiPvF4RQIXjYQ0-ps95_fXxOi_oV5nhsyzm-1rVttFsWeQk4tVVjfbEEPIMqc7oGj7XHk-L5pdzgO6jbXrEGfOvA-5WDn5J1_hgdGF16OPmNffQwurxPJ8H0ZnyVDqdBziNBg1hQkoQ6ynicRVonodB5RAwHKkxmItndaTJJGfAkz7iWkuZhElOZRIbwkPE-OtvObZx9W4FfqoVdubpdqVgYCiGZiGWrGmxVefevA6MaV1TabRQlqrNPdfapnX0tkGyB96KEzT9qNbwYzf7YbzLQdIE</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Schlicke, Hendrik</creator><creator>Kunze, Svenja</creator><creator>Rebber, Matthias</creator><creator>Schulz, Norbert</creator><creator>Riekeberg, Svenja</creator><creator>Trieu, Hoc Khiem</creator><creator>Vossmeyer, Tobias</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6977-4042</orcidid></search><sort><creationdate>20201001</creationdate><title>Cross‐Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors</title><author>Schlicke, Hendrik ; Kunze, Svenja ; Rebber, Matthias ; Schulz, Norbert ; Riekeberg, Svenja ; Trieu, Hoc Khiem ; Vossmeyer, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-671094a5b36b5aa947ac50f3e17fbf581773fb812e39cb3a881c4961895f03423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic force microscopy</topic><topic>Composite materials</topic><topic>Diaphragms</topic><topic>Differential pressure</topic><topic>Gold</topic><topic>gold nanoparticles</topic><topic>Materials science</topic><topic>Membranes</topic><topic>MEMS</topic><topic>nanoparticle composites</topic><topic>Nanoparticles</topic><topic>NEMS</topic><topic>Pressure sensors</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Strain</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schlicke, Hendrik</creatorcontrib><creatorcontrib>Kunze, Svenja</creatorcontrib><creatorcontrib>Rebber, Matthias</creatorcontrib><creatorcontrib>Schulz, Norbert</creatorcontrib><creatorcontrib>Riekeberg, Svenja</creatorcontrib><creatorcontrib>Trieu, Hoc Khiem</creatorcontrib><creatorcontrib>Vossmeyer, Tobias</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlicke, Hendrik</au><au>Kunze, Svenja</au><au>Rebber, Matthias</au><au>Schulz, Norbert</au><au>Riekeberg, Svenja</au><au>Trieu, Hoc Khiem</au><au>Vossmeyer, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross‐Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors</atitle><jtitle>Advanced functional materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In this article, highly sensitive differential pressure sensors based on free‐standing membranes of cross‐linked gold nanoparticles are demonstrated. The nanoparticle membranes are employed as both diaphragms and resistive transducers. The elasticity and the pronounced resistive strain sensitivity of these nanometer‐thin composites enable the fabrication of sensors achieving high sensitivities exceeding 10−3 mbar−1 while maintaining an overall small membrane area. Furthermore, by combining micro‐bulge tests with atomic force microscopy and in situ resistance measurements the membranes’ electromechanical responses are studied through precise observation of the concomitant changes of the membranes’ topography. The study demonstrates the high potential of free‐standing nanoparticle composites for the fabrication of highly sensitive force and pressure sensors and introduces a unique and powerful method for the electromechanical investigation of these materials.
The fabrication of free‐standing membranes consisting of inorganic/organic nanoparticle composites allows for coupling their optoelectronic properties to their mechanical characteristics. In this article, highly sensitive resistive differential pressure sensors benefiting from the elasticity and tunneling‐based strain‐sensitivity of these new materials are reported. Further, a unique and powerful technique for their electromechanical characterization is presented.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202003381</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-6977-4042</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-10, Vol.30 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2447782768 |
source | Access via Wiley Online Library |
subjects | Atomic force microscopy Composite materials Diaphragms Differential pressure Gold gold nanoparticles Materials science Membranes MEMS nanoparticle composites Nanoparticles NEMS Pressure sensors Sensitivity Sensors Strain Transducers |
title | Cross‐Linked Gold Nanoparticle Composite Membranes as Highly Sensitive Pressure Sensors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A39%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross%E2%80%90Linked%20Gold%20Nanoparticle%20Composite%20Membranes%20as%20Highly%20Sensitive%20Pressure%20Sensors&rft.jtitle=Advanced%20functional%20materials&rft.au=Schlicke,%20Hendrik&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202003381&rft_dat=%3Cproquest_cross%3E2447782768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447782768&rft_id=info:pmid/&rfr_iscdi=true |