Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis
An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐dope...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2020-10, Vol.30 (40), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 30 |
creator | Li, Huan Hu, Minghao Zhang, Luyao Huo, Lili Jing, Peng Liu, Baocang Gao, Rui Zhang, Jun Liu, Bin |
description | An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts.
A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution. |
doi_str_mv | 10.1002/adfm.202003198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447782607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447782607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSNEJUrLlrUl1jO1nUySYTfNTBmktiA6SOwix34eXDl5wXY6Cis-gV-EL8HNoLJkZUvv3uN3fZPkNaNzRim_EEq3c045pSlbls-SU5azfJZSXj5_urMvL5KX3t9TyooizU6TX9uxcUaZ7yIY7AhqcmlaCMJaI8kN2rFR0A3t7x8_d0O39wE6UgnXGAXkYMJXcmuCwz10UbDGHtQ0xe4tWZFPE1JYsgZv9hP7bujBkZUM5gHIR3Q4eFJh26M3Acit6PBgHPgjeieMRReRGwsyvtLFje6CG2QYHBCNjlwi-mC6PdmOatqCbB7QDlOSSsQQozf-PDnRwnp49fc8Sz5fbXbVdnb94d37anU9k-kiK2eiyVKutOKSZ9BoIbVsBNNF_Chgy3xRprqkbKGYYo2WILgAlcNykcW5zIClZ8mbI7d3-G0AH-p7HFzM72ueZUVR8pwWUTU_qqRD7x3ounemFW6sGa0fa6wfa6yfaoyG5dFwMBbG_6jr1frq5p_3D6nwqrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447782607</pqid></control><display><type>article</type><title>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</title><source>Access via Wiley Online Library</source><creator>Li, Huan ; Hu, Minghao ; Zhang, Luyao ; Huo, Lili ; Jing, Peng ; Liu, Baocang ; Gao, Rui ; Zhang, Jun ; Liu, Bin</creator><creatorcontrib>Li, Huan ; Hu, Minghao ; Zhang, Luyao ; Huo, Lili ; Jing, Peng ; Liu, Baocang ; Gao, Rui ; Zhang, Jun ; Liu, Bin</creatorcontrib><description>An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts.
A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202003198</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accessibility ; bimetallic carbides ; Bimetals ; Carbon ; Catalysis ; Chemical composition ; Cloth ; composite nanowires ; Composite structures ; electrocatalysis ; Electrocatalysts ; Electrodes ; Electronic structure ; Free energy ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen-based energy ; Materials science ; Molybdenum ; Nanowires ; Nitrogen ; nitrogen‐doped carbon ; Porosity ; Tungsten carbide</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</citedby><cites>FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</cites><orcidid>0000-0002-4685-2052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202003198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202003198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Hu, Minghao</creatorcontrib><creatorcontrib>Zhang, Luyao</creatorcontrib><creatorcontrib>Huo, Lili</creatorcontrib><creatorcontrib>Jing, Peng</creatorcontrib><creatorcontrib>Liu, Baocang</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><title>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</title><title>Advanced functional materials</title><description>An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts.
A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.</description><subject>Accessibility</subject><subject>bimetallic carbides</subject><subject>Bimetals</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical composition</subject><subject>Cloth</subject><subject>composite nanowires</subject><subject>Composite structures</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen-based energy</subject><subject>Materials science</subject><subject>Molybdenum</subject><subject>Nanowires</subject><subject>Nitrogen</subject><subject>nitrogen‐doped carbon</subject><subject>Porosity</subject><subject>Tungsten carbide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURSNEJUrLlrUl1jO1nUySYTfNTBmktiA6SOwix34eXDl5wXY6Cis-gV-EL8HNoLJkZUvv3uN3fZPkNaNzRim_EEq3c045pSlbls-SU5azfJZSXj5_urMvL5KX3t9TyooizU6TX9uxcUaZ7yIY7AhqcmlaCMJaI8kN2rFR0A3t7x8_d0O39wE6UgnXGAXkYMJXcmuCwz10UbDGHtQ0xe4tWZFPE1JYsgZv9hP7bujBkZUM5gHIR3Q4eFJh26M3Acit6PBgHPgjeieMRReRGwsyvtLFje6CG2QYHBCNjlwi-mC6PdmOatqCbB7QDlOSSsQQozf-PDnRwnp49fc8Sz5fbXbVdnb94d37anU9k-kiK2eiyVKutOKSZ9BoIbVsBNNF_Chgy3xRprqkbKGYYo2WILgAlcNykcW5zIClZ8mbI7d3-G0AH-p7HFzM72ueZUVR8pwWUTU_qqRD7x3ounemFW6sGa0fa6wfa6yfaoyG5dFwMBbG_6jr1frq5p_3D6nwqrU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Li, Huan</creator><creator>Hu, Minghao</creator><creator>Zhang, Luyao</creator><creator>Huo, Lili</creator><creator>Jing, Peng</creator><creator>Liu, Baocang</creator><creator>Gao, Rui</creator><creator>Zhang, Jun</creator><creator>Liu, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4685-2052</orcidid></search><sort><creationdate>20201001</creationdate><title>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</title><author>Li, Huan ; Hu, Minghao ; Zhang, Luyao ; Huo, Lili ; Jing, Peng ; Liu, Baocang ; Gao, Rui ; Zhang, Jun ; Liu, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accessibility</topic><topic>bimetallic carbides</topic><topic>Bimetals</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical composition</topic><topic>Cloth</topic><topic>composite nanowires</topic><topic>Composite structures</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen-based energy</topic><topic>Materials science</topic><topic>Molybdenum</topic><topic>Nanowires</topic><topic>Nitrogen</topic><topic>nitrogen‐doped carbon</topic><topic>Porosity</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Hu, Minghao</creatorcontrib><creatorcontrib>Zhang, Luyao</creatorcontrib><creatorcontrib>Huo, Lili</creatorcontrib><creatorcontrib>Jing, Peng</creatorcontrib><creatorcontrib>Liu, Baocang</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huan</au><au>Hu, Minghao</au><au>Zhang, Luyao</au><au>Huo, Lili</au><au>Jing, Peng</au><au>Liu, Baocang</au><au>Gao, Rui</au><au>Zhang, Jun</au><au>Liu, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts.
A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202003198</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4685-2052</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2020-10, Vol.30 (40), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2447782607 |
source | Access via Wiley Online Library |
subjects | Accessibility bimetallic carbides Bimetals Carbon Catalysis Chemical composition Cloth composite nanowires Composite structures electrocatalysis Electrocatalysts Electrodes Electronic structure Free energy Hydrogen hydrogen evolution reaction Hydrogen evolution reactions Hydrogen-based energy Materials science Molybdenum Nanowires Nitrogen nitrogen‐doped carbon Porosity Tungsten carbide |
title | Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybridization%20of%20Bimetallic%20Molybdenum%E2%80%90Tungsten%20Carbide%20with%20Nitrogen%E2%80%90Doped%20Carbon:%20A%20Rational%20Design%20of%20Super%20Active%20Porous%20Composite%20Nanowires%20with%20Tailored%20Electronic%20Structure%20for%20Boosting%20Hydrogen%20Evolution%20Catalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Huan&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202003198&rft_dat=%3Cproquest_cross%3E2447782607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447782607&rft_id=info:pmid/&rfr_iscdi=true |