Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis

An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐dope...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2020-10, Vol.30 (40), p.n/a
Hauptverfasser: Li, Huan, Hu, Minghao, Zhang, Luyao, Huo, Lili, Jing, Peng, Liu, Baocang, Gao, Rui, Zhang, Jun, Liu, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Advanced functional materials
container_volume 30
creator Li, Huan
Hu, Minghao
Zhang, Luyao
Huo, Lili
Jing, Peng
Liu, Baocang
Gao, Rui
Zhang, Jun
Liu, Bin
description An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts. A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.
doi_str_mv 10.1002/adfm.202003198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447782607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447782607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</originalsourceid><addsrcrecordid>eNqFkcFu1DAURSNEJUrLlrUl1jO1nUySYTfNTBmktiA6SOwix34eXDl5wXY6Cis-gV-EL8HNoLJkZUvv3uN3fZPkNaNzRim_EEq3c045pSlbls-SU5azfJZSXj5_urMvL5KX3t9TyooizU6TX9uxcUaZ7yIY7AhqcmlaCMJaI8kN2rFR0A3t7x8_d0O39wE6UgnXGAXkYMJXcmuCwz10UbDGHtQ0xe4tWZFPE1JYsgZv9hP7bujBkZUM5gHIR3Q4eFJh26M3Acit6PBgHPgjeieMRReRGwsyvtLFje6CG2QYHBCNjlwi-mC6PdmOatqCbB7QDlOSSsQQozf-PDnRwnp49fc8Sz5fbXbVdnb94d37anU9k-kiK2eiyVKutOKSZ9BoIbVsBNNF_Chgy3xRprqkbKGYYo2WILgAlcNykcW5zIClZ8mbI7d3-G0AH-p7HFzM72ueZUVR8pwWUTU_qqRD7x3ounemFW6sGa0fa6wfa6yfaoyG5dFwMBbG_6jr1frq5p_3D6nwqrU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447782607</pqid></control><display><type>article</type><title>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</title><source>Access via Wiley Online Library</source><creator>Li, Huan ; Hu, Minghao ; Zhang, Luyao ; Huo, Lili ; Jing, Peng ; Liu, Baocang ; Gao, Rui ; Zhang, Jun ; Liu, Bin</creator><creatorcontrib>Li, Huan ; Hu, Minghao ; Zhang, Luyao ; Huo, Lili ; Jing, Peng ; Liu, Baocang ; Gao, Rui ; Zhang, Jun ; Liu, Bin</creatorcontrib><description>An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts. A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202003198</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accessibility ; bimetallic carbides ; Bimetals ; Carbon ; Catalysis ; Chemical composition ; Cloth ; composite nanowires ; Composite structures ; electrocatalysis ; Electrocatalysts ; Electrodes ; Electronic structure ; Free energy ; Hydrogen ; hydrogen evolution reaction ; Hydrogen evolution reactions ; Hydrogen-based energy ; Materials science ; Molybdenum ; Nanowires ; Nitrogen ; nitrogen‐doped carbon ; Porosity ; Tungsten carbide</subject><ispartof>Advanced functional materials, 2020-10, Vol.30 (40), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</citedby><cites>FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</cites><orcidid>0000-0002-4685-2052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202003198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202003198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Hu, Minghao</creatorcontrib><creatorcontrib>Zhang, Luyao</creatorcontrib><creatorcontrib>Huo, Lili</creatorcontrib><creatorcontrib>Jing, Peng</creatorcontrib><creatorcontrib>Liu, Baocang</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><title>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</title><title>Advanced functional materials</title><description>An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts. A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.</description><subject>Accessibility</subject><subject>bimetallic carbides</subject><subject>Bimetals</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical composition</subject><subject>Cloth</subject><subject>composite nanowires</subject><subject>Composite structures</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Hydrogen</subject><subject>hydrogen evolution reaction</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen-based energy</subject><subject>Materials science</subject><subject>Molybdenum</subject><subject>Nanowires</subject><subject>Nitrogen</subject><subject>nitrogen‐doped carbon</subject><subject>Porosity</subject><subject>Tungsten carbide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAURSNEJUrLlrUl1jO1nUySYTfNTBmktiA6SOwix34eXDl5wXY6Cis-gV-EL8HNoLJkZUvv3uN3fZPkNaNzRim_EEq3c045pSlbls-SU5azfJZSXj5_urMvL5KX3t9TyooizU6TX9uxcUaZ7yIY7AhqcmlaCMJaI8kN2rFR0A3t7x8_d0O39wE6UgnXGAXkYMJXcmuCwz10UbDGHtQ0xe4tWZFPE1JYsgZv9hP7bujBkZUM5gHIR3Q4eFJh26M3Acit6PBgHPgjeieMRReRGwsyvtLFje6CG2QYHBCNjlwi-mC6PdmOatqCbB7QDlOSSsQQozf-PDnRwnp49fc8Sz5fbXbVdnb94d37anU9k-kiK2eiyVKutOKSZ9BoIbVsBNNF_Chgy3xRprqkbKGYYo2WILgAlcNykcW5zIClZ8mbI7d3-G0AH-p7HFzM72ueZUVR8pwWUTU_qqRD7x3ounemFW6sGa0fa6wfa6yfaoyG5dFwMBbG_6jr1frq5p_3D6nwqrU</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Li, Huan</creator><creator>Hu, Minghao</creator><creator>Zhang, Luyao</creator><creator>Huo, Lili</creator><creator>Jing, Peng</creator><creator>Liu, Baocang</creator><creator>Gao, Rui</creator><creator>Zhang, Jun</creator><creator>Liu, Bin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4685-2052</orcidid></search><sort><creationdate>20201001</creationdate><title>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</title><author>Li, Huan ; Hu, Minghao ; Zhang, Luyao ; Huo, Lili ; Jing, Peng ; Liu, Baocang ; Gao, Rui ; Zhang, Jun ; Liu, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-ab432dfd2c24ebfacfcba1f7017e196583f8015d1d1bfcea2aed6e95417ec4e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accessibility</topic><topic>bimetallic carbides</topic><topic>Bimetals</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical composition</topic><topic>Cloth</topic><topic>composite nanowires</topic><topic>Composite structures</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Hydrogen</topic><topic>hydrogen evolution reaction</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen-based energy</topic><topic>Materials science</topic><topic>Molybdenum</topic><topic>Nanowires</topic><topic>Nitrogen</topic><topic>nitrogen‐doped carbon</topic><topic>Porosity</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huan</creatorcontrib><creatorcontrib>Hu, Minghao</creatorcontrib><creatorcontrib>Zhang, Luyao</creatorcontrib><creatorcontrib>Huo, Lili</creatorcontrib><creatorcontrib>Jing, Peng</creatorcontrib><creatorcontrib>Liu, Baocang</creatorcontrib><creatorcontrib>Gao, Rui</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huan</au><au>Hu, Minghao</au><au>Zhang, Luyao</au><au>Huo, Lili</au><au>Jing, Peng</au><au>Liu, Baocang</au><au>Gao, Rui</au><au>Zhang, Jun</au><au>Liu, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis</atitle><jtitle>Advanced functional materials</jtitle><date>2020-10-01</date><risdate>2020</risdate><volume>30</volume><issue>40</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>An ecofriendly and robust strategy is developed to construct a self‐supported monolithic electrode composed of N‐doped carbon hybridized with bimetallic molybdenum‐tungsten carbide (MoxW2−xC) to form composite nanowires for hydrogen evolution reaction (HER). The hybridization of MoxW2−xC with N‐doped carbon enables effective regulation of the electrocatalytic performance of the composite nanowires, endowing abundant accessible active sites derived from N‐doping and MoxW2−xC incorporation, outstanding conductivity resulting from the N‐doped carbon matrix, and appropriate positioning of the d‐band center with a thermodynamically favorable hydrogen adsorption free energy (ΔGH*) for efficient hydrogen evolution catalysis, which forms a binder‐free 3D self‐supported monolithic electrode with accessible nanopores, desirable chemical compositions and stable composite structure. By modulating the Mo/W ratio, the optimal Mo1.33W0.67C @ NC nanowires on carbon cloth achieve a low overpotential (at a geometric current density of 10 mA cm−2) of 115 and 108 mV and a small Tafel slope of 58.5 and 55.4 mV dec−1 in acidic and alkaline environments, respectively, which can maintain 40 h of stable performance, outperforming most of the reported metal‐carbide‐based HER electrocatalysts. A 3D self‐supported monolithic electrode (MoxW2−xC@ NC/CC) made from bimetallic molybdenum‐tungsten carbide (MoxW2−xC) embedded in N‐doped carbon (NC) to form composite nanowires on carbon cloth (CC) is fabricated for the hydrogen evolution reaction. The ultrafine MoxW2−xC nanoparticles are effective in regulating the electronic structure of N‐doped carbon layers to achieve the optimized hydrogen adsorption/desorption for efficient hydrogen evolution.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202003198</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4685-2052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2020-10, Vol.30 (40), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2447782607
source Access via Wiley Online Library
subjects Accessibility
bimetallic carbides
Bimetals
Carbon
Catalysis
Chemical composition
Cloth
composite nanowires
Composite structures
electrocatalysis
Electrocatalysts
Electrodes
Electronic structure
Free energy
Hydrogen
hydrogen evolution reaction
Hydrogen evolution reactions
Hydrogen-based energy
Materials science
Molybdenum
Nanowires
Nitrogen
nitrogen‐doped carbon
Porosity
Tungsten carbide
title Hybridization of Bimetallic Molybdenum‐Tungsten Carbide with Nitrogen‐Doped Carbon: A Rational Design of Super Active Porous Composite Nanowires with Tailored Electronic Structure for Boosting Hydrogen Evolution Catalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A07%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybridization%20of%20Bimetallic%20Molybdenum%E2%80%90Tungsten%20Carbide%20with%20Nitrogen%E2%80%90Doped%20Carbon:%20A%20Rational%20Design%20of%20Super%20Active%20Porous%20Composite%20Nanowires%20with%20Tailored%20Electronic%20Structure%20for%20Boosting%20Hydrogen%20Evolution%20Catalysis&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Huan&rft.date=2020-10-01&rft.volume=30&rft.issue=40&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202003198&rft_dat=%3Cproquest_cross%3E2447782607%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447782607&rft_id=info:pmid/&rfr_iscdi=true