A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing

In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-11
Hauptverfasser: Chen, Sanxing, San, Aidan, Liu, Xiaodong, Ji, Yangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chen, Sanxing
San, Aidan
Liu, Xiaodong
Ji, Yangfeng
description In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effectiveness of these two linking processes changes based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network-based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our proposed method helps to enhance the structure of the model output when generating complicated SQL queries and offers more explainable predictions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2447715368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447715368</sourcerecordid><originalsourceid>FETCH-proquest_journals_24477153683</originalsourceid><addsrcrecordid>eNqNyr0KwjAUhuEgCBb1Hg44B2rSP9zE38FBaXY51lRbY6JJinr3dlBnpw-e7-2QgHE-plnEWI8MnavDMGRJyuKYB-Q2BYFKgilBPAxsKn2p9MlNYP7SeK0KVOoFK_QtwkH6h5Qa8uIsr_htAfURcm-bwjcW1Y9LY0HIp6fe0Hy3gS1a1_qAdEtUTg4_2yej5ULM1vRmzb2Rzu9r01jdXnsWRWk6jnmS8f-qN_ifSX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447715368</pqid></control><display><type>article</type><title>A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing</title><source>Free E- Journals</source><creator>Chen, Sanxing ; San, Aidan ; Liu, Xiaodong ; Ji, Yangfeng</creator><creatorcontrib>Chen, Sanxing ; San, Aidan ; Liu, Xiaodong ; Ji, Yangfeng</creatorcontrib><description>In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effectiveness of these two linking processes changes based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network-based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our proposed method helps to enhance the structure of the model output when generating complicated SQL queries and offers more explainable predictions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Columns (structural) ; Graph neural networks ; Parsers ; Query languages ; Semantics</subject><ispartof>arXiv.org, 2020-11</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Chen, Sanxing</creatorcontrib><creatorcontrib>San, Aidan</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>Ji, Yangfeng</creatorcontrib><title>A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing</title><title>arXiv.org</title><description>In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effectiveness of these two linking processes changes based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network-based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our proposed method helps to enhance the structure of the model output when generating complicated SQL queries and offers more explainable predictions.</description><subject>Columns (structural)</subject><subject>Graph neural networks</subject><subject>Parsers</subject><subject>Query languages</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyr0KwjAUhuEgCBb1Hg44B2rSP9zE38FBaXY51lRbY6JJinr3dlBnpw-e7-2QgHE-plnEWI8MnavDMGRJyuKYB-Q2BYFKgilBPAxsKn2p9MlNYP7SeK0KVOoFK_QtwkH6h5Qa8uIsr_htAfURcm-bwjcW1Y9LY0HIp6fe0Hy3gS1a1_qAdEtUTg4_2yej5ULM1vRmzb2Rzu9r01jdXnsWRWk6jnmS8f-qN_ifSX8</recordid><startdate>20201122</startdate><enddate>20201122</enddate><creator>Chen, Sanxing</creator><creator>San, Aidan</creator><creator>Liu, Xiaodong</creator><creator>Ji, Yangfeng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201122</creationdate><title>A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing</title><author>Chen, Sanxing ; San, Aidan ; Liu, Xiaodong ; Ji, Yangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24477153683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Columns (structural)</topic><topic>Graph neural networks</topic><topic>Parsers</topic><topic>Query languages</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sanxing</creatorcontrib><creatorcontrib>San, Aidan</creatorcontrib><creatorcontrib>Liu, Xiaodong</creatorcontrib><creatorcontrib>Ji, Yangfeng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sanxing</au><au>San, Aidan</au><au>Liu, Xiaodong</au><au>Ji, Yangfeng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing</atitle><jtitle>arXiv.org</jtitle><date>2020-11-22</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>In Text-to-SQL semantic parsing, selecting the correct entities (tables and columns) for the generated SQL query is both crucial and challenging; the parser is required to connect the natural language (NL) question and the SQL query to the structured knowledge in the database. We formulate two linking processes to address this challenge: schema linking which links explicit NL mentions to the database and structural linking which links the entities in the output SQL with their structural relationships in the database schema. Intuitively, the effectiveness of these two linking processes changes based on the entity being generated, thus we propose to dynamically choose between them using a gating mechanism. Integrating the proposed method with two graph neural network-based semantic parsers together with BERT representations demonstrates substantial gains in parsing accuracy on the challenging Spider dataset. Analyses show that our proposed method helps to enhance the structure of the model output when generating complicated SQL queries and offers more explainable predictions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2447715368
source Free E- Journals
subjects Columns (structural)
Graph neural networks
Parsers
Query languages
Semantics
title A Tale of Two Linkings: Dynamically Gating between Schema Linking and Structural Linking for Text-to-SQL Parsing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Tale%20of%20Two%20Linkings:%20Dynamically%20Gating%20between%20Schema%20Linking%20and%20Structural%20Linking%20for%20Text-to-SQL%20Parsing&rft.jtitle=arXiv.org&rft.au=Chen,%20Sanxing&rft.date=2020-11-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2447715368%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447715368&rft_id=info:pmid/&rfr_iscdi=true