Maximum Entropy classification for record linkage

By record linkage one joins records residing in separate files which are believed to be related to the same entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy classification method in text mining to record linkage, both in the supervised and u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-11
Hauptverfasser: Lee, Danhyang, Li-Chun, Zhang, Jae-Kwang, Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lee, Danhyang
Li-Chun, Zhang
Jae-Kwang, Kim
description By record linkage one joins records residing in separate files which are believed to be related to the same entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy classification method in text mining to record linkage, both in the supervised and unsupervised settings of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and Sunter (1969); on the other hand, the proposed algorithm is scalable and fully automatic, unlike the classical approach that generally requires clerical review to resolve the undecided cases.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2447714932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447714932</sourcerecordid><originalsourceid>FETCH-proquest_journals_24477149323</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9E2syMwtzVVwzSspyi-oVEjOSSwuzkzLTE4syczPU0jLL1IoSk3OL0pRyMnMy05MT-VhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjExNzc0MTS2MjY-JUAQDZAjPo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447714932</pqid></control><display><type>article</type><title>Maximum Entropy classification for record linkage</title><source>Free E- Journals</source><creator>Lee, Danhyang ; Li-Chun, Zhang ; Jae-Kwang, Kim</creator><creatorcontrib>Lee, Danhyang ; Li-Chun, Zhang ; Jae-Kwang, Kim</creatorcontrib><description>By record linkage one joins records residing in separate files which are believed to be related to the same entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy classification method in text mining to record linkage, both in the supervised and unsupervised settings of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and Sunter (1969); on the other hand, the proposed algorithm is scalable and fully automatic, unlike the classical approach that generally requires clerical review to resolve the undecided cases.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Classification ; Entropy ; Machine learning ; Maximum entropy</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Lee, Danhyang</creatorcontrib><creatorcontrib>Li-Chun, Zhang</creatorcontrib><creatorcontrib>Jae-Kwang, Kim</creatorcontrib><title>Maximum Entropy classification for record linkage</title><title>arXiv.org</title><description>By record linkage one joins records residing in separate files which are believed to be related to the same entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy classification method in text mining to record linkage, both in the supervised and unsupervised settings of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and Sunter (1969); on the other hand, the proposed algorithm is scalable and fully automatic, unlike the classical approach that generally requires clerical review to resolve the undecided cases.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Entropy</subject><subject>Machine learning</subject><subject>Maximum entropy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9E2syMwtzVVwzSspyi-oVEjOSSwuzkzLTE4syczPU0jLL1IoSk3OL0pRyMnMy05MT-VhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjExNzc0MTS2MjY-JUAQDZAjPo</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>Lee, Danhyang</creator><creator>Li-Chun, Zhang</creator><creator>Jae-Kwang, Kim</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211111</creationdate><title>Maximum Entropy classification for record linkage</title><author>Lee, Danhyang ; Li-Chun, Zhang ; Jae-Kwang, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24477149323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Entropy</topic><topic>Machine learning</topic><topic>Maximum entropy</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Danhyang</creatorcontrib><creatorcontrib>Li-Chun, Zhang</creatorcontrib><creatorcontrib>Jae-Kwang, Kim</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Danhyang</au><au>Li-Chun, Zhang</au><au>Jae-Kwang, Kim</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Maximum Entropy classification for record linkage</atitle><jtitle>arXiv.org</jtitle><date>2021-11-11</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>By record linkage one joins records residing in separate files which are believed to be related to the same entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy classification method in text mining to record linkage, both in the supervised and unsupervised settings of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and Sunter (1969); on the other hand, the proposed algorithm is scalable and fully automatic, unlike the classical approach that generally requires clerical review to resolve the undecided cases.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2447714932
source Free E- Journals
subjects Algorithms
Classification
Entropy
Machine learning
Maximum entropy
title Maximum Entropy classification for record linkage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Maximum%20Entropy%20classification%20for%20record%20linkage&rft.jtitle=arXiv.org&rft.au=Lee,%20Danhyang&rft.date=2021-11-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2447714932%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447714932&rft_id=info:pmid/&rfr_iscdi=true