Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry

We present an acoustic ejection mass spectrometry (AEMS) setup for contactless electrospray ionization mass spectrometry (ESI-MS)-based sample injection at a sampling rate faster than current ESI and matrix-assisted laser desorption ionization (MALDI) techniques. For the direct transfer of samples o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2020-09, Vol.92 (18), p.12242-12249
Hauptverfasser: Häbe, Tim T, Liu, Chang, Covey, Tom R, Simon, Roman P, Reindl, Wolfgang, Büttner, Frank H, Winter, Martin, Bischoff, Daniel, Luippold, Andreas H, Runge, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12249
container_issue 18
container_start_page 12242
container_title Analytical chemistry (Washington)
container_volume 92
creator Häbe, Tim T
Liu, Chang
Covey, Tom R
Simon, Roman P
Reindl, Wolfgang
Büttner, Frank H
Winter, Martin
Bischoff, Daniel
Luippold, Andreas H
Runge, Frank
description We present an acoustic ejection mass spectrometry (AEMS) setup for contactless electrospray ionization mass spectrometry (ESI-MS)-based sample injection at a sampling rate faster than current ESI and matrix-assisted laser desorption ionization (MALDI) techniques. For the direct transfer of samples out of 384-well plates into a modified ESI source, an open port interface (OPI) was combined with a modified acoustic droplet ejection (ADE) system. AEMS has the potential to eliminate bottlenecks known from classical MS approaches, such as speed, reproducibility, carryover, ion suppression, as well as sample preparation and consumption. This setup provided a drastically reduced transfer distance between OPI and ESI electrode for optimum throughput performance and broadens the scope of applications for this emerging technique. To simulate label-free applications of drug metabolism and pharmacokinetics (DMPK) analysis and high-throughput screening (HTS) campaigns, two stress tests were performed regarding ion suppression and system endurance in combination with minor sample preparation. The maximum sampling rate was 6 Hz for dextromethorphan and d 3-dextrorphan (each 100 nM) for 1152 injections in 63 s at full width at half-maximum (FWHM) of 105 ms and a relative standard deviation (%RSD) of 7.7/7.5% without internal standard correction. Enzyme assay buffer and crude dog plasma caused signal suppression of 51/73% at %RSD of 5.7/6.7% (n = 120). An HTS endurance buffer was used for >25 000 injections with minor OPI pollution and constant signals (%RSD = 8.5%, FWHM of 177 ms ± 8.5%, n = 10 557). The optimized hardware and method setup resulted in high-throughput performance and enables further implementation in a fully automated platform for ESI-MS-based high-throughput screening.
doi_str_mv 10.1021/acs.analchem.0c01632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447573485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447573485</sourcerecordid><originalsourceid>FETCH-LOGICAL-a376t-a690220752ed2d9e0eb044eb2519427bd2fc2fc5bc58fa93d4708d21cd1659c3</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMobk7fQCTgdedJmjatd2NMHWwodF6XNEnXjnapSQvu7e3otkvhQDjh-_8DH0KPBKYEKHkR0k3FXlSy0PUUJJDQp1doTAIKXhhF9BqNAcD3KAcYoTvndgCE9NgtGvmURyHj4RjV31VrRVFuC29TWNNti6Zr8SJZeuvkFSeibqpyv8VfnSu0wq3BSfk7fGuHG21xoqXZK5wd8EyazrWlxIudlm1p9ngtnMNJ02_W1Lq1h3t0k4vK6YfTO0Gbt8Vm_uGtPt-X89nKEz4PW0-EMVAKPKBaURVr0BkwpjMakJhRnimay36CTAZRLmJfMQ6RokQqEgax9CfoeahtrPnptGvTnels78qllDEecJ9FQU-xgZLWOGd1nja2rIU9pATSo-K0V5yeFacnxX3s6VTeZbVWl9DZaQ_AABzjl8P_dv4BhPGLGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447573485</pqid></control><display><type>article</type><title>Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Häbe, Tim T ; Liu, Chang ; Covey, Tom R ; Simon, Roman P ; Reindl, Wolfgang ; Büttner, Frank H ; Winter, Martin ; Bischoff, Daniel ; Luippold, Andreas H ; Runge, Frank</creator><creatorcontrib>Häbe, Tim T ; Liu, Chang ; Covey, Tom R ; Simon, Roman P ; Reindl, Wolfgang ; Büttner, Frank H ; Winter, Martin ; Bischoff, Daniel ; Luippold, Andreas H ; Runge, Frank</creatorcontrib><description>We present an acoustic ejection mass spectrometry (AEMS) setup for contactless electrospray ionization mass spectrometry (ESI-MS)-based sample injection at a sampling rate faster than current ESI and matrix-assisted laser desorption ionization (MALDI) techniques. For the direct transfer of samples out of 384-well plates into a modified ESI source, an open port interface (OPI) was combined with a modified acoustic droplet ejection (ADE) system. AEMS has the potential to eliminate bottlenecks known from classical MS approaches, such as speed, reproducibility, carryover, ion suppression, as well as sample preparation and consumption. This setup provided a drastically reduced transfer distance between OPI and ESI electrode for optimum throughput performance and broadens the scope of applications for this emerging technique. To simulate label-free applications of drug metabolism and pharmacokinetics (DMPK) analysis and high-throughput screening (HTS) campaigns, two stress tests were performed regarding ion suppression and system endurance in combination with minor sample preparation. The maximum sampling rate was 6 Hz for dextromethorphan and d 3-dextrorphan (each 100 nM) for 1152 injections in 63 s at full width at half-maximum (FWHM) of 105 ms and a relative standard deviation (%RSD) of 7.7/7.5% without internal standard correction. Enzyme assay buffer and crude dog plasma caused signal suppression of 51/73% at %RSD of 5.7/6.7% (n = 120). An HTS endurance buffer was used for &gt;25 000 injections with minor OPI pollution and constant signals (%RSD = 8.5%, FWHM of 177 ms ± 8.5%, n = 10 557). The optimized hardware and method setup resulted in high-throughput performance and enables further implementation in a fully automated platform for ESI-MS-based high-throughput screening.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.0c01632</identifier><identifier>PMID: 32786476</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acoustics ; Animals ; Buffers ; Chemistry ; Cytochrome P-450 Enzyme System - blood ; Cytochrome P-450 Enzyme System - metabolism ; Dextromethorphan ; Dextromethorphan - analysis ; Dextrorphan - analysis ; Dogs ; Drug metabolism ; Ejection ; Electrodes ; Endurance ; Female ; High-throughput screening ; High-Throughput Screening Assays - instrumentation ; Ionization ; Ions ; Male ; Mass spectrometry ; Mass spectroscopy ; Particle Size ; Pharmacokinetics ; Sample preparation ; Sampling ; Scientific imaging ; Screening ; Spectrometry, Mass, Electrospray Ionization - instrumentation ; Spectroscopy ; Time Factors</subject><ispartof>Analytical chemistry (Washington), 2020-09, Vol.92 (18), p.12242-12249</ispartof><rights>Copyright American Chemical Society Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a376t-a690220752ed2d9e0eb044eb2519427bd2fc2fc5bc58fa93d4708d21cd1659c3</citedby><cites>FETCH-LOGICAL-a376t-a690220752ed2d9e0eb044eb2519427bd2fc2fc5bc58fa93d4708d21cd1659c3</cites><orcidid>0000-0003-0508-4357 ; 0000-0001-8329-4857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.0c01632$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.0c01632$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32786476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Häbe, Tim T</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Covey, Tom R</creatorcontrib><creatorcontrib>Simon, Roman P</creatorcontrib><creatorcontrib>Reindl, Wolfgang</creatorcontrib><creatorcontrib>Büttner, Frank H</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Bischoff, Daniel</creatorcontrib><creatorcontrib>Luippold, Andreas H</creatorcontrib><creatorcontrib>Runge, Frank</creatorcontrib><title>Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We present an acoustic ejection mass spectrometry (AEMS) setup for contactless electrospray ionization mass spectrometry (ESI-MS)-based sample injection at a sampling rate faster than current ESI and matrix-assisted laser desorption ionization (MALDI) techniques. For the direct transfer of samples out of 384-well plates into a modified ESI source, an open port interface (OPI) was combined with a modified acoustic droplet ejection (ADE) system. AEMS has the potential to eliminate bottlenecks known from classical MS approaches, such as speed, reproducibility, carryover, ion suppression, as well as sample preparation and consumption. This setup provided a drastically reduced transfer distance between OPI and ESI electrode for optimum throughput performance and broadens the scope of applications for this emerging technique. To simulate label-free applications of drug metabolism and pharmacokinetics (DMPK) analysis and high-throughput screening (HTS) campaigns, two stress tests were performed regarding ion suppression and system endurance in combination with minor sample preparation. The maximum sampling rate was 6 Hz for dextromethorphan and d 3-dextrorphan (each 100 nM) for 1152 injections in 63 s at full width at half-maximum (FWHM) of 105 ms and a relative standard deviation (%RSD) of 7.7/7.5% without internal standard correction. Enzyme assay buffer and crude dog plasma caused signal suppression of 51/73% at %RSD of 5.7/6.7% (n = 120). An HTS endurance buffer was used for &gt;25 000 injections with minor OPI pollution and constant signals (%RSD = 8.5%, FWHM of 177 ms ± 8.5%, n = 10 557). The optimized hardware and method setup resulted in high-throughput performance and enables further implementation in a fully automated platform for ESI-MS-based high-throughput screening.</description><subject>Acoustics</subject><subject>Animals</subject><subject>Buffers</subject><subject>Chemistry</subject><subject>Cytochrome P-450 Enzyme System - blood</subject><subject>Cytochrome P-450 Enzyme System - metabolism</subject><subject>Dextromethorphan</subject><subject>Dextromethorphan - analysis</subject><subject>Dextrorphan - analysis</subject><subject>Dogs</subject><subject>Drug metabolism</subject><subject>Ejection</subject><subject>Electrodes</subject><subject>Endurance</subject><subject>Female</subject><subject>High-throughput screening</subject><subject>High-Throughput Screening Assays - instrumentation</subject><subject>Ionization</subject><subject>Ions</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Particle Size</subject><subject>Pharmacokinetics</subject><subject>Sample preparation</subject><subject>Sampling</subject><subject>Scientific imaging</subject><subject>Screening</subject><subject>Spectrometry, Mass, Electrospray Ionization - instrumentation</subject><subject>Spectroscopy</subject><subject>Time Factors</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kNFKwzAUhoMobk7fQCTgdedJmjatd2NMHWwodF6XNEnXjnapSQvu7e3otkvhQDjh-_8DH0KPBKYEKHkR0k3FXlSy0PUUJJDQp1doTAIKXhhF9BqNAcD3KAcYoTvndgCE9NgtGvmURyHj4RjV31VrRVFuC29TWNNti6Zr8SJZeuvkFSeibqpyv8VfnSu0wq3BSfk7fGuHG21xoqXZK5wd8EyazrWlxIudlm1p9ngtnMNJ02_W1Lq1h3t0k4vK6YfTO0Gbt8Vm_uGtPt-X89nKEz4PW0-EMVAKPKBaURVr0BkwpjMakJhRnimay36CTAZRLmJfMQ6RokQqEgax9CfoeahtrPnptGvTnels78qllDEecJ9FQU-xgZLWOGd1nja2rIU9pATSo-K0V5yeFacnxX3s6VTeZbVWl9DZaQ_AABzjl8P_dv4BhPGLGg</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Häbe, Tim T</creator><creator>Liu, Chang</creator><creator>Covey, Tom R</creator><creator>Simon, Roman P</creator><creator>Reindl, Wolfgang</creator><creator>Büttner, Frank H</creator><creator>Winter, Martin</creator><creator>Bischoff, Daniel</creator><creator>Luippold, Andreas H</creator><creator>Runge, Frank</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-0508-4357</orcidid><orcidid>https://orcid.org/0000-0001-8329-4857</orcidid></search><sort><creationdate>20200915</creationdate><title>Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry</title><author>Häbe, Tim T ; Liu, Chang ; Covey, Tom R ; Simon, Roman P ; Reindl, Wolfgang ; Büttner, Frank H ; Winter, Martin ; Bischoff, Daniel ; Luippold, Andreas H ; Runge, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a376t-a690220752ed2d9e0eb044eb2519427bd2fc2fc5bc58fa93d4708d21cd1659c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acoustics</topic><topic>Animals</topic><topic>Buffers</topic><topic>Chemistry</topic><topic>Cytochrome P-450 Enzyme System - blood</topic><topic>Cytochrome P-450 Enzyme System - metabolism</topic><topic>Dextromethorphan</topic><topic>Dextromethorphan - analysis</topic><topic>Dextrorphan - analysis</topic><topic>Dogs</topic><topic>Drug metabolism</topic><topic>Ejection</topic><topic>Electrodes</topic><topic>Endurance</topic><topic>Female</topic><topic>High-throughput screening</topic><topic>High-Throughput Screening Assays - instrumentation</topic><topic>Ionization</topic><topic>Ions</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Particle Size</topic><topic>Pharmacokinetics</topic><topic>Sample preparation</topic><topic>Sampling</topic><topic>Scientific imaging</topic><topic>Screening</topic><topic>Spectrometry, Mass, Electrospray Ionization - instrumentation</topic><topic>Spectroscopy</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Häbe, Tim T</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Covey, Tom R</creatorcontrib><creatorcontrib>Simon, Roman P</creatorcontrib><creatorcontrib>Reindl, Wolfgang</creatorcontrib><creatorcontrib>Büttner, Frank H</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Bischoff, Daniel</creatorcontrib><creatorcontrib>Luippold, Andreas H</creatorcontrib><creatorcontrib>Runge, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Häbe, Tim T</au><au>Liu, Chang</au><au>Covey, Tom R</au><au>Simon, Roman P</au><au>Reindl, Wolfgang</au><au>Büttner, Frank H</au><au>Winter, Martin</au><au>Bischoff, Daniel</au><au>Luippold, Andreas H</au><au>Runge, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2020-09-15</date><risdate>2020</risdate><volume>92</volume><issue>18</issue><spage>12242</spage><epage>12249</epage><pages>12242-12249</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>We present an acoustic ejection mass spectrometry (AEMS) setup for contactless electrospray ionization mass spectrometry (ESI-MS)-based sample injection at a sampling rate faster than current ESI and matrix-assisted laser desorption ionization (MALDI) techniques. For the direct transfer of samples out of 384-well plates into a modified ESI source, an open port interface (OPI) was combined with a modified acoustic droplet ejection (ADE) system. AEMS has the potential to eliminate bottlenecks known from classical MS approaches, such as speed, reproducibility, carryover, ion suppression, as well as sample preparation and consumption. This setup provided a drastically reduced transfer distance between OPI and ESI electrode for optimum throughput performance and broadens the scope of applications for this emerging technique. To simulate label-free applications of drug metabolism and pharmacokinetics (DMPK) analysis and high-throughput screening (HTS) campaigns, two stress tests were performed regarding ion suppression and system endurance in combination with minor sample preparation. The maximum sampling rate was 6 Hz for dextromethorphan and d 3-dextrorphan (each 100 nM) for 1152 injections in 63 s at full width at half-maximum (FWHM) of 105 ms and a relative standard deviation (%RSD) of 7.7/7.5% without internal standard correction. Enzyme assay buffer and crude dog plasma caused signal suppression of 51/73% at %RSD of 5.7/6.7% (n = 120). An HTS endurance buffer was used for &gt;25 000 injections with minor OPI pollution and constant signals (%RSD = 8.5%, FWHM of 177 ms ± 8.5%, n = 10 557). The optimized hardware and method setup resulted in high-throughput performance and enables further implementation in a fully automated platform for ESI-MS-based high-throughput screening.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32786476</pmid><doi>10.1021/acs.analchem.0c01632</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0508-4357</orcidid><orcidid>https://orcid.org/0000-0001-8329-4857</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2020-09, Vol.92 (18), p.12242-12249
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_journals_2447573485
source MEDLINE; American Chemical Society Journals
subjects Acoustics
Animals
Buffers
Chemistry
Cytochrome P-450 Enzyme System - blood
Cytochrome P-450 Enzyme System - metabolism
Dextromethorphan
Dextromethorphan - analysis
Dextrorphan - analysis
Dogs
Drug metabolism
Ejection
Electrodes
Endurance
Female
High-throughput screening
High-Throughput Screening Assays - instrumentation
Ionization
Ions
Male
Mass spectrometry
Mass spectroscopy
Particle Size
Pharmacokinetics
Sample preparation
Sampling
Scientific imaging
Screening
Spectrometry, Mass, Electrospray Ionization - instrumentation
Spectroscopy
Time Factors
title Ultrahigh-Throughput ESI-MS: Sampling Pushed to Six Samples per Second by Acoustic Ejection Mass Spectrometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh-Throughput%20ESI-MS:%20Sampling%20Pushed%20to%20Six%20Samples%20per%20Second%20by%20Acoustic%20Ejection%20Mass%20Spectrometry&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ha%CC%88be,%20Tim%20T&rft.date=2020-09-15&rft.volume=92&rft.issue=18&rft.spage=12242&rft.epage=12249&rft.pages=12242-12249&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.0c01632&rft_dat=%3Cproquest_cross%3E2447573485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447573485&rft_id=info:pmid/32786476&rfr_iscdi=true