Spectral CT Reconstruction via Low-Rank Representation and Region-Specific Texture Preserving Markov Random Field Regularization

Photon-counting spectral computed tomography (CT) is capable of material characterization and can improve diagnostic performance over traditional clinical CT. However, it suffers from photon count starving for each individual energy channel which may cause severe artifacts in the reconstructed image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2020-10, Vol.39 (10), p.2996-3007
Hauptverfasser: Shi, Yongyi, Gao, Yongfeng, Zhang, Yanbo, Sun, Junqi, Mou, Xuanqin, Liang, Zhengrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photon-counting spectral computed tomography (CT) is capable of material characterization and can improve diagnostic performance over traditional clinical CT. However, it suffers from photon count starving for each individual energy channel which may cause severe artifacts in the reconstructed images. Furthermore, since the images in different energy channels describe the same object, there are high correlations among different channels. To make full use of the inter-channel correlations and minimize the count starving effect while maintaining clinically meaningful texture information, this paper combines a region-specific texture model with a low-rank correlation descriptor as an a priori regularization to explore a superior texture preserving Bayesian reconstruction of spectral CT. Specifically, the inter-channel correlations are characterized by the low-rank representation, and the inner-channel regional textures are modeled by a texture preserving Markov random field. In other words, this paper integrates the spectral and spatial information into a unified Bayesian reconstruction framework. The widely-used Split-Bregman algorithm is employed to minimize the objective function because of the non-differentiable property of the low-rank representation. To evaluate the tissue texture preserving performance of the proposed method for each channel, three references are built for comparison: one is the traditional CT image from energy integration detection. The second one is spectral images from dual-energy CT. The third one is individual channels images from custom-made photon-counting spectral CT. As expected, the proposed method produced promising results in terms of not only preserving texture features but also suppressing image noise in each channel, comparing to existing methods of total variation (TV), low-rank TV and tensor dictionary learning, by both visual inspection and quantitative indexes of root mean square error, peak signal to noise ratio, structural similarity and feature similarity.
ISSN:0278-0062
1558-254X
DOI:10.1109/TMI.2020.2983414