Reliability analysis for accelerated degradation data based on the Wiener process with random effects
On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of...
Gespeichert in:
Veröffentlicht in: | Quality and reliability engineering international 2020-10, Vol.36 (6), p.1969-1981 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1981 |
---|---|
container_issue | 6 |
container_start_page | 1969 |
container_title | Quality and reliability engineering international |
container_volume | 36 |
creator | Wang, Xiaofei Wang, Bing Xing Wu, Wenhui Hong, Yili |
description | On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures. |
doi_str_mv | 10.1002/qre.2668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447561613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447561613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI12U2zyVFK_QMFsSgew3QzsSnb3TbZUvbbm7pePQyPefwY5j1CbjmbcMbyh33ASS6lOiMjzrTOuCzUORmxUqhMMV5ekqsYN4wlWKsRwSXWHla-9l1PoYG6jz5S1wYKVYU1BujQUovfASx0vm1oEqAriMlOW7dG-uWxwUB3oa0wRnr03ZoGaGy7pegcVl28JhcO6og3fzomn0_zj9lLtnh7fp09LrKqKKTKgCFDC1xLhlxUaWTpOAhdgiy1UNbmtuRKO6us5Fo5YYXk05SwkELmohiTu-Fu-mV_wNiZTXsIKVU0uRDlVHLJi0TdD1QV2hgDOrMLfguhN5yZU4kmlWhOJSY0G9Cjr7H_lzPvy_kv_wOC9XL3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447561613</pqid></control><display><type>article</type><title>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiaofei ; Wang, Bing Xing ; Wu, Wenhui ; Hong, Yili</creator><creatorcontrib>Wang, Xiaofei ; Wang, Bing Xing ; Wu, Wenhui ; Hong, Yili</creatorcontrib><description>On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2668</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Computer simulation ; Confidence intervals ; constant stress accelerated degradation ; Degradation ; degradation mechanism ; generalized pivotal quantity ; Mean time to failure ; Monte Carlo simulation ; Process parameters ; random effect ; Regression analysis ; Regression models ; reliability ; Reliability analysis ; Statistical analysis ; Statistical inference ; Statistical methods</subject><ispartof>Quality and reliability engineering international, 2020-10, Vol.36 (6), p.1969-1981</ispartof><rights>2020 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</citedby><cites>FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</cites><orcidid>0000-0002-0802-9313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2668$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2668$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Bing Xing</creatorcontrib><creatorcontrib>Wu, Wenhui</creatorcontrib><creatorcontrib>Hong, Yili</creatorcontrib><title>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</title><title>Quality and reliability engineering international</title><description>On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.</description><subject>Accelerated tests</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>constant stress accelerated degradation</subject><subject>Degradation</subject><subject>degradation mechanism</subject><subject>generalized pivotal quantity</subject><subject>Mean time to failure</subject><subject>Monte Carlo simulation</subject><subject>Process parameters</subject><subject>random effect</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI12U2zyVFK_QMFsSgew3QzsSnb3TbZUvbbm7pePQyPefwY5j1CbjmbcMbyh33ASS6lOiMjzrTOuCzUORmxUqhMMV5ekqsYN4wlWKsRwSXWHla-9l1PoYG6jz5S1wYKVYU1BujQUovfASx0vm1oEqAriMlOW7dG-uWxwUB3oa0wRnr03ZoGaGy7pegcVl28JhcO6og3fzomn0_zj9lLtnh7fp09LrKqKKTKgCFDC1xLhlxUaWTpOAhdgiy1UNbmtuRKO6us5Fo5YYXk05SwkELmohiTu-Fu-mV_wNiZTXsIKVU0uRDlVHLJi0TdD1QV2hgDOrMLfguhN5yZU4kmlWhOJSY0G9Cjr7H_lzPvy_kv_wOC9XL3</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Wang, Xiaofei</creator><creator>Wang, Bing Xing</creator><creator>Wu, Wenhui</creator><creator>Hong, Yili</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-0802-9313</orcidid></search><sort><creationdate>202010</creationdate><title>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</title><author>Wang, Xiaofei ; Wang, Bing Xing ; Wu, Wenhui ; Hong, Yili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>constant stress accelerated degradation</topic><topic>Degradation</topic><topic>degradation mechanism</topic><topic>generalized pivotal quantity</topic><topic>Mean time to failure</topic><topic>Monte Carlo simulation</topic><topic>Process parameters</topic><topic>random effect</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Bing Xing</creatorcontrib><creatorcontrib>Wu, Wenhui</creatorcontrib><creatorcontrib>Hong, Yili</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaofei</au><au>Wang, Bing Xing</au><au>Wu, Wenhui</au><au>Hong, Yili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2020-10</date><risdate>2020</risdate><volume>36</volume><issue>6</issue><spage>1969</spage><epage>1981</epage><pages>1969-1981</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2668</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0802-9313</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-8017 |
ispartof | Quality and reliability engineering international, 2020-10, Vol.36 (6), p.1969-1981 |
issn | 0748-8017 1099-1638 |
language | eng |
recordid | cdi_proquest_journals_2447561613 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accelerated tests Computer simulation Confidence intervals constant stress accelerated degradation Degradation degradation mechanism generalized pivotal quantity Mean time to failure Monte Carlo simulation Process parameters random effect Regression analysis Regression models reliability Reliability analysis Statistical analysis Statistical inference Statistical methods |
title | Reliability analysis for accelerated degradation data based on the Wiener process with random effects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20analysis%20for%20accelerated%20degradation%20data%20based%20on%20the%20Wiener%20process%20with%20random%20effects&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Wang,%20Xiaofei&rft.date=2020-10&rft.volume=36&rft.issue=6&rft.spage=1969&rft.epage=1981&rft.pages=1969-1981&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2668&rft_dat=%3Cproquest_cross%3E2447561613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447561613&rft_id=info:pmid/&rfr_iscdi=true |