Reliability analysis for accelerated degradation data based on the Wiener process with random effects

On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality and reliability engineering international 2020-10, Vol.36 (6), p.1969-1981
Hauptverfasser: Wang, Xiaofei, Wang, Bing Xing, Wu, Wenhui, Hong, Yili
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1981
container_issue 6
container_start_page 1969
container_title Quality and reliability engineering international
container_volume 36
creator Wang, Xiaofei
Wang, Bing Xing
Wu, Wenhui
Hong, Yili
description On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.
doi_str_mv 10.1002/qre.2668
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447561613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447561613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKvgRwh48bI12U2zyVFK_QMFsSgew3QzsSnb3TbZUvbbm7pePQyPefwY5j1CbjmbcMbyh33ASS6lOiMjzrTOuCzUORmxUqhMMV5ekqsYN4wlWKsRwSXWHla-9l1PoYG6jz5S1wYKVYU1BujQUovfASx0vm1oEqAriMlOW7dG-uWxwUB3oa0wRnr03ZoGaGy7pegcVl28JhcO6og3fzomn0_zj9lLtnh7fp09LrKqKKTKgCFDC1xLhlxUaWTpOAhdgiy1UNbmtuRKO6us5Fo5YYXk05SwkELmohiTu-Fu-mV_wNiZTXsIKVU0uRDlVHLJi0TdD1QV2hgDOrMLfguhN5yZU4kmlWhOJSY0G9Cjr7H_lzPvy_kv_wOC9XL3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447561613</pqid></control><display><type>article</type><title>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Xiaofei ; Wang, Bing Xing ; Wu, Wenhui ; Hong, Yili</creator><creatorcontrib>Wang, Xiaofei ; Wang, Bing Xing ; Wu, Wenhui ; Hong, Yili</creatorcontrib><description>On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2668</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accelerated tests ; Computer simulation ; Confidence intervals ; constant stress accelerated degradation ; Degradation ; degradation mechanism ; generalized pivotal quantity ; Mean time to failure ; Monte Carlo simulation ; Process parameters ; random effect ; Regression analysis ; Regression models ; reliability ; Reliability analysis ; Statistical analysis ; Statistical inference ; Statistical methods</subject><ispartof>Quality and reliability engineering international, 2020-10, Vol.36 (6), p.1969-1981</ispartof><rights>2020 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</citedby><cites>FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</cites><orcidid>0000-0002-0802-9313</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqre.2668$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqre.2668$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Bing Xing</creatorcontrib><creatorcontrib>Wu, Wenhui</creatorcontrib><creatorcontrib>Hong, Yili</creatorcontrib><title>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</title><title>Quality and reliability engineering international</title><description>On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.</description><subject>Accelerated tests</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>constant stress accelerated degradation</subject><subject>Degradation</subject><subject>degradation mechanism</subject><subject>generalized pivotal quantity</subject><subject>Mean time to failure</subject><subject>Monte Carlo simulation</subject><subject>Process parameters</subject><subject>random effect</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>reliability</subject><subject>Reliability analysis</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKvgRwh48bI12U2zyVFK_QMFsSgew3QzsSnb3TbZUvbbm7pePQyPefwY5j1CbjmbcMbyh33ASS6lOiMjzrTOuCzUORmxUqhMMV5ekqsYN4wlWKsRwSXWHla-9l1PoYG6jz5S1wYKVYU1BujQUovfASx0vm1oEqAriMlOW7dG-uWxwUB3oa0wRnr03ZoGaGy7pegcVl28JhcO6og3fzomn0_zj9lLtnh7fp09LrKqKKTKgCFDC1xLhlxUaWTpOAhdgiy1UNbmtuRKO6us5Fo5YYXk05SwkELmohiTu-Fu-mV_wNiZTXsIKVU0uRDlVHLJi0TdD1QV2hgDOrMLfguhN5yZU4kmlWhOJSY0G9Cjr7H_lzPvy_kv_wOC9XL3</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Wang, Xiaofei</creator><creator>Wang, Bing Xing</creator><creator>Wu, Wenhui</creator><creator>Hong, Yili</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-0802-9313</orcidid></search><sort><creationdate>202010</creationdate><title>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</title><author>Wang, Xiaofei ; Wang, Bing Xing ; Wu, Wenhui ; Hong, Yili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3368-a0e0eda1960e14ce1467f1a497a67948dd2d7189fd8d6198f4d46156383646243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tests</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>constant stress accelerated degradation</topic><topic>Degradation</topic><topic>degradation mechanism</topic><topic>generalized pivotal quantity</topic><topic>Mean time to failure</topic><topic>Monte Carlo simulation</topic><topic>Process parameters</topic><topic>random effect</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>reliability</topic><topic>Reliability analysis</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wang, Bing Xing</creatorcontrib><creatorcontrib>Wu, Wenhui</creatorcontrib><creatorcontrib>Hong, Yili</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiaofei</au><au>Wang, Bing Xing</au><au>Wu, Wenhui</au><au>Hong, Yili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability analysis for accelerated degradation data based on the Wiener process with random effects</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2020-10</date><risdate>2020</risdate><volume>36</volume><issue>6</issue><spage>1969</spage><epage>1981</epage><pages>1969-1981</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>On the basis of the principle of degradation mechanism invariance, a Wiener degradation process with random drift parameter is used to model the data collected from the constant stress accelerated degradation test. Small‐sample statistical inference method for this model is proposed. On the basis of Fisher's method, a test statistic is proposed to test if there is unit‐to‐unit variability in the population. For reliability inference, the quantities of interest are the quantile function, the reliability function, and the mean time to failure at the designed stress level. Because it is challenging to obtain exact confidence intervals (CIs) for these quantities, a regression type of model is used to construct pivotal quantities, and we develop generalized confidence intervals (GCIs) procedure for those quantities of interest. Generalized prediction interval for future degradation value at designed stress level is also discussed. A Monte Carlo simulation study is used to demonstrate the benefits of our procedures. Through simulation comparison, it is found that the coverage proportions of the proposed GCIs are better than that of the Wald CIs and GCIs have good properties even when there are only a small number of test samples available. Finally, a real example is used to illustrate the developed procedures.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2668</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0802-9313</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2020-10, Vol.36 (6), p.1969-1981
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2447561613
source Wiley Online Library Journals Frontfile Complete
subjects Accelerated tests
Computer simulation
Confidence intervals
constant stress accelerated degradation
Degradation
degradation mechanism
generalized pivotal quantity
Mean time to failure
Monte Carlo simulation
Process parameters
random effect
Regression analysis
Regression models
reliability
Reliability analysis
Statistical analysis
Statistical inference
Statistical methods
title Reliability analysis for accelerated degradation data based on the Wiener process with random effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A46%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20analysis%20for%20accelerated%20degradation%20data%20based%20on%20the%20Wiener%20process%20with%20random%20effects&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Wang,%20Xiaofei&rft.date=2020-10&rft.volume=36&rft.issue=6&rft.spage=1969&rft.epage=1981&rft.pages=1969-1981&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2668&rft_dat=%3Cproquest_cross%3E2447561613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447561613&rft_id=info:pmid/&rfr_iscdi=true