geoorigins: A new method and r package for trait mapping and geographic provenancing of specimens without categorical constraints

Biologists often seek to geographically provenance organisms using their traits. This is typically achieved by defining spatial groups using distinct patterns of trait variation. Here, we present a new spatial provenancing and trait boundary identification methodology, based on correlations between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2020-10, Vol.11 (10), p.1247-1257
Hauptverfasser: Hulme‐Beaman, Ardern, Rudzinski, Anna, Cooper, Joseph E. J., Lachlan, Robert F., Dobney, Keith, Thomas, Mark G., Graham, Laura
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1257
container_issue 10
container_start_page 1247
container_title Methods in ecology and evolution
container_volume 11
creator Hulme‐Beaman, Ardern
Rudzinski, Anna
Cooper, Joseph E. J.
Lachlan, Robert F.
Dobney, Keith
Thomas, Mark G.
Graham, Laura
description Biologists often seek to geographically provenance organisms using their traits. This is typically achieved by defining spatial groups using distinct patterns of trait variation. Here, we present a new spatial provenancing and trait boundary identification methodology, based on correlations between geographic and trait distances that require no a priori group assumptions. We apply this to three datasets where spatial provenance is sought: morphological rat and vole dentition data (human commensal translocation datasets); and birdsong data (cultural transmission dataset). We also present the results of cross‐validation testing. Spatial provenancing is possible with differing degrees of accuracy for each dataset, with birdsong providing the most accurate geographic origin (identifying an average spatial region of 0.22 km2 as the area of origin with 99.9% confidence). Our method has a wide range of potential applications to diverse data types—including phenotypic, genetic and cultural—to identify trait boundaries and spatially provenance the origin of unknown or translocated specimens where trait differences are geographically structured and correlated with spatial separation.
doi_str_mv 10.1111/2041-210X.13444
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447395336</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447395336</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2314-e2757844cd9f96bab84c5e79256f60405ca90f8c318084736ac6db6d9b51c9583</originalsourceid><addsrcrecordid>eNqFkL1PwzAQxS0EElXpzGqJOa0dO07MVlXlQypiAYnNchwndWntYKdUHfnPcRqE2LjlTr73e2c9AK4xmuJYsxRRnKQYvU0xoZSegdHvy_mf-RJMQtigWKTgKKUj8NVo57xpjA23cA6tPsCd7taugtJW0MNWqnfZaFg7DzsvTQd3sm2NbU77CDdetmujYOvdp7bSqn7nahharcxO2wAPJvrtO6hkp5t4S8ktVM6G3s524Qpc1HIb9OSnj8Hr3fJl8ZCsnu8fF_NVolKCaaLTPMsLSlXFa85KWRZUZTrnacZqhijKlOSoLhTBBSpoTphUrCpZxcsMK54VZAxuBt_404-9Dp3YuL238aRIaQR4RgiLqtmgUt6F4HUtWm920h8FRqKPWvRhij5McYo6EmwgDmarj__JxdNySQbwG3Crgew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447395336</pqid></control><display><type>article</type><title>geoorigins: A new method and r package for trait mapping and geographic provenancing of specimens without categorical constraints</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Hulme‐Beaman, Ardern ; Rudzinski, Anna ; Cooper, Joseph E. J. ; Lachlan, Robert F. ; Dobney, Keith ; Thomas, Mark G. ; Graham, Laura</creator><contributor>Graham, Laura</contributor><creatorcontrib>Hulme‐Beaman, Ardern ; Rudzinski, Anna ; Cooper, Joseph E. J. ; Lachlan, Robert F. ; Dobney, Keith ; Thomas, Mark G. ; Graham, Laura ; Graham, Laura</creatorcontrib><description>Biologists often seek to geographically provenance organisms using their traits. This is typically achieved by defining spatial groups using distinct patterns of trait variation. Here, we present a new spatial provenancing and trait boundary identification methodology, based on correlations between geographic and trait distances that require no a priori group assumptions. We apply this to three datasets where spatial provenance is sought: morphological rat and vole dentition data (human commensal translocation datasets); and birdsong data (cultural transmission dataset). We also present the results of cross‐validation testing. Spatial provenancing is possible with differing degrees of accuracy for each dataset, with birdsong providing the most accurate geographic origin (identifying an average spatial region of 0.22 km2 as the area of origin with 99.9% confidence). Our method has a wide range of potential applications to diverse data types—including phenotypic, genetic and cultural—to identify trait boundaries and spatially provenance the origin of unknown or translocated specimens where trait differences are geographically structured and correlated with spatial separation.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13444</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>biogeography ; Confidence ; Datasets ; Dentition ; Gene mapping ; identification ; Mapping ; morphology ; phylogeography ; Provenance ; provenancing ; spatial mapping ; Teeth ; trait mapping ; Translocation</subject><ispartof>Methods in ecology and evolution, 2020-10, Vol.11 (10), p.1247-1257</ispartof><rights>2020 The Authors. published by John Wiley &amp; Sons Ltd on behalf of British Ecological Society</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2314-e2757844cd9f96bab84c5e79256f60405ca90f8c318084736ac6db6d9b51c9583</citedby><cites>FETCH-LOGICAL-c2314-e2757844cd9f96bab84c5e79256f60405ca90f8c318084736ac6db6d9b51c9583</cites><orcidid>0000-0002-2452-981X ; 0000-0003-0946-1316 ; 0000-0001-8130-9648 ; 0000-0001-7796-4500 ; 0000-0001-9036-4681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13444$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13444$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><contributor>Graham, Laura</contributor><creatorcontrib>Hulme‐Beaman, Ardern</creatorcontrib><creatorcontrib>Rudzinski, Anna</creatorcontrib><creatorcontrib>Cooper, Joseph E. J.</creatorcontrib><creatorcontrib>Lachlan, Robert F.</creatorcontrib><creatorcontrib>Dobney, Keith</creatorcontrib><creatorcontrib>Thomas, Mark G.</creatorcontrib><creatorcontrib>Graham, Laura</creatorcontrib><title>geoorigins: A new method and r package for trait mapping and geographic provenancing of specimens without categorical constraints</title><title>Methods in ecology and evolution</title><description>Biologists often seek to geographically provenance organisms using their traits. This is typically achieved by defining spatial groups using distinct patterns of trait variation. Here, we present a new spatial provenancing and trait boundary identification methodology, based on correlations between geographic and trait distances that require no a priori group assumptions. We apply this to three datasets where spatial provenance is sought: morphological rat and vole dentition data (human commensal translocation datasets); and birdsong data (cultural transmission dataset). We also present the results of cross‐validation testing. Spatial provenancing is possible with differing degrees of accuracy for each dataset, with birdsong providing the most accurate geographic origin (identifying an average spatial region of 0.22 km2 as the area of origin with 99.9% confidence). Our method has a wide range of potential applications to diverse data types—including phenotypic, genetic and cultural—to identify trait boundaries and spatially provenance the origin of unknown or translocated specimens where trait differences are geographically structured and correlated with spatial separation.</description><subject>biogeography</subject><subject>Confidence</subject><subject>Datasets</subject><subject>Dentition</subject><subject>Gene mapping</subject><subject>identification</subject><subject>Mapping</subject><subject>morphology</subject><subject>phylogeography</subject><subject>Provenance</subject><subject>provenancing</subject><subject>spatial mapping</subject><subject>Teeth</subject><subject>trait mapping</subject><subject>Translocation</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1PwzAQxS0EElXpzGqJOa0dO07MVlXlQypiAYnNchwndWntYKdUHfnPcRqE2LjlTr73e2c9AK4xmuJYsxRRnKQYvU0xoZSegdHvy_mf-RJMQtigWKTgKKUj8NVo57xpjA23cA6tPsCd7taugtJW0MNWqnfZaFg7DzsvTQd3sm2NbU77CDdetmujYOvdp7bSqn7nahharcxO2wAPJvrtO6hkp5t4S8ktVM6G3s524Qpc1HIb9OSnj8Hr3fJl8ZCsnu8fF_NVolKCaaLTPMsLSlXFa85KWRZUZTrnacZqhijKlOSoLhTBBSpoTphUrCpZxcsMK54VZAxuBt_404-9Dp3YuL238aRIaQR4RgiLqtmgUt6F4HUtWm920h8FRqKPWvRhij5McYo6EmwgDmarj__JxdNySQbwG3Crgew</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Hulme‐Beaman, Ardern</creator><creator>Rudzinski, Anna</creator><creator>Cooper, Joseph E. J.</creator><creator>Lachlan, Robert F.</creator><creator>Dobney, Keith</creator><creator>Thomas, Mark G.</creator><creator>Graham, Laura</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-2452-981X</orcidid><orcidid>https://orcid.org/0000-0003-0946-1316</orcidid><orcidid>https://orcid.org/0000-0001-8130-9648</orcidid><orcidid>https://orcid.org/0000-0001-7796-4500</orcidid><orcidid>https://orcid.org/0000-0001-9036-4681</orcidid></search><sort><creationdate>202010</creationdate><title>geoorigins: A new method and r package for trait mapping and geographic provenancing of specimens without categorical constraints</title><author>Hulme‐Beaman, Ardern ; Rudzinski, Anna ; Cooper, Joseph E. J. ; Lachlan, Robert F. ; Dobney, Keith ; Thomas, Mark G. ; Graham, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2314-e2757844cd9f96bab84c5e79256f60405ca90f8c318084736ac6db6d9b51c9583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>biogeography</topic><topic>Confidence</topic><topic>Datasets</topic><topic>Dentition</topic><topic>Gene mapping</topic><topic>identification</topic><topic>Mapping</topic><topic>morphology</topic><topic>phylogeography</topic><topic>Provenance</topic><topic>provenancing</topic><topic>spatial mapping</topic><topic>Teeth</topic><topic>trait mapping</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hulme‐Beaman, Ardern</creatorcontrib><creatorcontrib>Rudzinski, Anna</creatorcontrib><creatorcontrib>Cooper, Joseph E. J.</creatorcontrib><creatorcontrib>Lachlan, Robert F.</creatorcontrib><creatorcontrib>Dobney, Keith</creatorcontrib><creatorcontrib>Thomas, Mark G.</creatorcontrib><creatorcontrib>Graham, Laura</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hulme‐Beaman, Ardern</au><au>Rudzinski, Anna</au><au>Cooper, Joseph E. J.</au><au>Lachlan, Robert F.</au><au>Dobney, Keith</au><au>Thomas, Mark G.</au><au>Graham, Laura</au><au>Graham, Laura</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>geoorigins: A new method and r package for trait mapping and geographic provenancing of specimens without categorical constraints</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2020-10</date><risdate>2020</risdate><volume>11</volume><issue>10</issue><spage>1247</spage><epage>1257</epage><pages>1247-1257</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Biologists often seek to geographically provenance organisms using their traits. This is typically achieved by defining spatial groups using distinct patterns of trait variation. Here, we present a new spatial provenancing and trait boundary identification methodology, based on correlations between geographic and trait distances that require no a priori group assumptions. We apply this to three datasets where spatial provenance is sought: morphological rat and vole dentition data (human commensal translocation datasets); and birdsong data (cultural transmission dataset). We also present the results of cross‐validation testing. Spatial provenancing is possible with differing degrees of accuracy for each dataset, with birdsong providing the most accurate geographic origin (identifying an average spatial region of 0.22 km2 as the area of origin with 99.9% confidence). Our method has a wide range of potential applications to diverse data types—including phenotypic, genetic and cultural—to identify trait boundaries and spatially provenance the origin of unknown or translocated specimens where trait differences are geographically structured and correlated with spatial separation.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.13444</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2452-981X</orcidid><orcidid>https://orcid.org/0000-0003-0946-1316</orcidid><orcidid>https://orcid.org/0000-0001-8130-9648</orcidid><orcidid>https://orcid.org/0000-0001-7796-4500</orcidid><orcidid>https://orcid.org/0000-0001-9036-4681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2020-10, Vol.11 (10), p.1247-1257
issn 2041-210X
2041-210X
language eng
recordid cdi_proquest_journals_2447395336
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects biogeography
Confidence
Datasets
Dentition
Gene mapping
identification
Mapping
morphology
phylogeography
Provenance
provenancing
spatial mapping
Teeth
trait mapping
Translocation
title geoorigins: A new method and r package for trait mapping and geographic provenancing of specimens without categorical constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A24%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=geoorigins:%20A%20new%20method%20and%20r%20package%20for%20trait%20mapping%20and%20geographic%20provenancing%20of%20specimens%20without%20categorical%20constraints&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Hulme%E2%80%90Beaman,%20Ardern&rft.date=2020-10&rft.volume=11&rft.issue=10&rft.spage=1247&rft.epage=1257&rft.pages=1247-1257&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13444&rft_dat=%3Cproquest_cross%3E2447395336%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447395336&rft_id=info:pmid/&rfr_iscdi=true