How to induce superconductivity in epitaxial graphene \(via\) remote proximity effect through an intercalated gold layer

Graphene holds promises for exploring exotic superconductivity with Dirac-like fermions. Making graphene a superconductor at large scales is however a long-lasting challenge. A possible solution relies on epitaxially-grown graphene, using a superconducting substrate. Such substrates are scarce, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Mazaleyrat, Estelle, Vlaic, Sergio, Artaud, Alexandre, Magaud, Laurence, Thomas, Vincent, Gómez-Herrero, Ana Cristina, Lisi, Simone, Singh, Priyank, Bendiab, Nedjma, Guisset, Valérie, Philippe, David, Pons, Stéphane, Roditchev, Dimitri, Chapelier, Claude, Coraux, Johann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Mazaleyrat, Estelle
Vlaic, Sergio
Artaud, Alexandre
Magaud, Laurence
Thomas, Vincent
Gómez-Herrero, Ana Cristina
Lisi, Simone
Singh, Priyank
Bendiab, Nedjma
Guisset, Valérie
Philippe, David
Pons, Stéphane
Roditchev, Dimitri
Chapelier, Claude
Coraux, Johann
description Graphene holds promises for exploring exotic superconductivity with Dirac-like fermions. Making graphene a superconductor at large scales is however a long-lasting challenge. A possible solution relies on epitaxially-grown graphene, using a superconducting substrate. Such substrates are scarce, and usually destroy the Dirac character of the electronic band structure. Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene \(via\) a remote proximity effect, from the rhenium substrate through an intercalated gold layer. Weak graphene-Au interaction, contrasting with the strong undesired graphene-Re interaction, is demonstrated by a reduced graphene corrugation, an increased distance between graphene and the underlying metal, a linear electronic dispersion and a characteristic vibrational signature, both latter features revealing also a slight \(p\) doping of graphene. We also reveal that the main shortcoming of the intercalation approach to proximity superconductivity is the creation of a high density of point defects in graphene (10\(^{14}\)~cm\(^{-2}\)). Finally, we demonstrate remote proximity superconductivity in graphene/Au/Re(0001), at low temperature.
doi_str_mv 10.48550/arxiv.2009.13176
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2447370304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447370304</sourcerecordid><originalsourceid>FETCH-proquest_journals_24473703043</originalsourceid><addsrcrecordid>eNqNjNFKwzAUhoMgOHQP4N0Bb_RiNU3SdV6LsgfwcjAO7WmbkTU1Oand25uBD-DVz8_38QnxWMrC7KpKvmJY7FwoKd-KUpf19kaslNblZmeUuhPrGE9SSrWtVVXplVj2_gfYgx3b1BDENFFo_PWwnS1fMgCaLONi0UEfcBpoJDg8zxYPLxDo7JlgCn6x56tOXUcNAw_Bp34AHHOAcxIdMrXQe9eCwwuFB3HboYu0_tt78fT58fW-3-TWd6LIx5NPYczoqIypdS21NPp_1i8uGlTK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447370304</pqid></control><display><type>article</type><title>How to induce superconductivity in epitaxial graphene \(via\) remote proximity effect through an intercalated gold layer</title><source>Free E- Journals</source><creator>Mazaleyrat, Estelle ; Vlaic, Sergio ; Artaud, Alexandre ; Magaud, Laurence ; Thomas, Vincent ; Gómez-Herrero, Ana Cristina ; Lisi, Simone ; Singh, Priyank ; Bendiab, Nedjma ; Guisset, Valérie ; Philippe, David ; Pons, Stéphane ; Roditchev, Dimitri ; Chapelier, Claude ; Coraux, Johann</creator><creatorcontrib>Mazaleyrat, Estelle ; Vlaic, Sergio ; Artaud, Alexandre ; Magaud, Laurence ; Thomas, Vincent ; Gómez-Herrero, Ana Cristina ; Lisi, Simone ; Singh, Priyank ; Bendiab, Nedjma ; Guisset, Valérie ; Philippe, David ; Pons, Stéphane ; Roditchev, Dimitri ; Chapelier, Claude ; Coraux, Johann</creatorcontrib><description>Graphene holds promises for exploring exotic superconductivity with Dirac-like fermions. Making graphene a superconductor at large scales is however a long-lasting challenge. A possible solution relies on epitaxially-grown graphene, using a superconducting substrate. Such substrates are scarce, and usually destroy the Dirac character of the electronic band structure. Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene \(via\) a remote proximity effect, from the rhenium substrate through an intercalated gold layer. Weak graphene-Au interaction, contrasting with the strong undesired graphene-Re interaction, is demonstrated by a reduced graphene corrugation, an increased distance between graphene and the underlying metal, a linear electronic dispersion and a characteristic vibrational signature, both latter features revealing also a slight \(p\) doping of graphene. We also reveal that the main shortcoming of the intercalation approach to proximity superconductivity is the creation of a high density of point defects in graphene (10\(^{14}\)~cm\(^{-2}\)). Finally, we demonstrate remote proximity superconductivity in graphene/Au/Re(0001), at low temperature.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2009.13176</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Atomic beam spectroscopy ; Atomic force microscopy ; Density functional theory ; Electron diffraction ; Epitaxial growth ; Fermions ; Gold ; Graphene ; Low temperature ; Microscopy ; Photoelectric emission ; Point defects ; Proximity ; Proximity effect (electricity) ; Raman spectroscopy ; Rhenium ; Spectrum analysis ; Substrates ; Superconductivity</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Mazaleyrat, Estelle</creatorcontrib><creatorcontrib>Vlaic, Sergio</creatorcontrib><creatorcontrib>Artaud, Alexandre</creatorcontrib><creatorcontrib>Magaud, Laurence</creatorcontrib><creatorcontrib>Thomas, Vincent</creatorcontrib><creatorcontrib>Gómez-Herrero, Ana Cristina</creatorcontrib><creatorcontrib>Lisi, Simone</creatorcontrib><creatorcontrib>Singh, Priyank</creatorcontrib><creatorcontrib>Bendiab, Nedjma</creatorcontrib><creatorcontrib>Guisset, Valérie</creatorcontrib><creatorcontrib>Philippe, David</creatorcontrib><creatorcontrib>Pons, Stéphane</creatorcontrib><creatorcontrib>Roditchev, Dimitri</creatorcontrib><creatorcontrib>Chapelier, Claude</creatorcontrib><creatorcontrib>Coraux, Johann</creatorcontrib><title>How to induce superconductivity in epitaxial graphene \(via\) remote proximity effect through an intercalated gold layer</title><title>arXiv.org</title><description>Graphene holds promises for exploring exotic superconductivity with Dirac-like fermions. Making graphene a superconductor at large scales is however a long-lasting challenge. A possible solution relies on epitaxially-grown graphene, using a superconducting substrate. Such substrates are scarce, and usually destroy the Dirac character of the electronic band structure. Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene \(via\) a remote proximity effect, from the rhenium substrate through an intercalated gold layer. Weak graphene-Au interaction, contrasting with the strong undesired graphene-Re interaction, is demonstrated by a reduced graphene corrugation, an increased distance between graphene and the underlying metal, a linear electronic dispersion and a characteristic vibrational signature, both latter features revealing also a slight \(p\) doping of graphene. We also reveal that the main shortcoming of the intercalation approach to proximity superconductivity is the creation of a high density of point defects in graphene (10\(^{14}\)~cm\(^{-2}\)). Finally, we demonstrate remote proximity superconductivity in graphene/Au/Re(0001), at low temperature.</description><subject>Atomic beam spectroscopy</subject><subject>Atomic force microscopy</subject><subject>Density functional theory</subject><subject>Electron diffraction</subject><subject>Epitaxial growth</subject><subject>Fermions</subject><subject>Gold</subject><subject>Graphene</subject><subject>Low temperature</subject><subject>Microscopy</subject><subject>Photoelectric emission</subject><subject>Point defects</subject><subject>Proximity</subject><subject>Proximity effect (electricity)</subject><subject>Raman spectroscopy</subject><subject>Rhenium</subject><subject>Spectrum analysis</subject><subject>Substrates</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjNFKwzAUhoMgOHQP4N0Bb_RiNU3SdV6LsgfwcjAO7WmbkTU1Oand25uBD-DVz8_38QnxWMrC7KpKvmJY7FwoKd-KUpf19kaslNblZmeUuhPrGE9SSrWtVVXplVj2_gfYgx3b1BDENFFo_PWwnS1fMgCaLONi0UEfcBpoJDg8zxYPLxDo7JlgCn6x56tOXUcNAw_Bp34AHHOAcxIdMrXQe9eCwwuFB3HboYu0_tt78fT58fW-3-TWd6LIx5NPYczoqIypdS21NPp_1i8uGlTK</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Mazaleyrat, Estelle</creator><creator>Vlaic, Sergio</creator><creator>Artaud, Alexandre</creator><creator>Magaud, Laurence</creator><creator>Thomas, Vincent</creator><creator>Gómez-Herrero, Ana Cristina</creator><creator>Lisi, Simone</creator><creator>Singh, Priyank</creator><creator>Bendiab, Nedjma</creator><creator>Guisset, Valérie</creator><creator>Philippe, David</creator><creator>Pons, Stéphane</creator><creator>Roditchev, Dimitri</creator><creator>Chapelier, Claude</creator><creator>Coraux, Johann</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200928</creationdate><title>How to induce superconductivity in epitaxial graphene \(via\) remote proximity effect through an intercalated gold layer</title><author>Mazaleyrat, Estelle ; Vlaic, Sergio ; Artaud, Alexandre ; Magaud, Laurence ; Thomas, Vincent ; Gómez-Herrero, Ana Cristina ; Lisi, Simone ; Singh, Priyank ; Bendiab, Nedjma ; Guisset, Valérie ; Philippe, David ; Pons, Stéphane ; Roditchev, Dimitri ; Chapelier, Claude ; Coraux, Johann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24473703043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Atomic beam spectroscopy</topic><topic>Atomic force microscopy</topic><topic>Density functional theory</topic><topic>Electron diffraction</topic><topic>Epitaxial growth</topic><topic>Fermions</topic><topic>Gold</topic><topic>Graphene</topic><topic>Low temperature</topic><topic>Microscopy</topic><topic>Photoelectric emission</topic><topic>Point defects</topic><topic>Proximity</topic><topic>Proximity effect (electricity)</topic><topic>Raman spectroscopy</topic><topic>Rhenium</topic><topic>Spectrum analysis</topic><topic>Substrates</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Mazaleyrat, Estelle</creatorcontrib><creatorcontrib>Vlaic, Sergio</creatorcontrib><creatorcontrib>Artaud, Alexandre</creatorcontrib><creatorcontrib>Magaud, Laurence</creatorcontrib><creatorcontrib>Thomas, Vincent</creatorcontrib><creatorcontrib>Gómez-Herrero, Ana Cristina</creatorcontrib><creatorcontrib>Lisi, Simone</creatorcontrib><creatorcontrib>Singh, Priyank</creatorcontrib><creatorcontrib>Bendiab, Nedjma</creatorcontrib><creatorcontrib>Guisset, Valérie</creatorcontrib><creatorcontrib>Philippe, David</creatorcontrib><creatorcontrib>Pons, Stéphane</creatorcontrib><creatorcontrib>Roditchev, Dimitri</creatorcontrib><creatorcontrib>Chapelier, Claude</creatorcontrib><creatorcontrib>Coraux, Johann</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mazaleyrat, Estelle</au><au>Vlaic, Sergio</au><au>Artaud, Alexandre</au><au>Magaud, Laurence</au><au>Thomas, Vincent</au><au>Gómez-Herrero, Ana Cristina</au><au>Lisi, Simone</au><au>Singh, Priyank</au><au>Bendiab, Nedjma</au><au>Guisset, Valérie</au><au>Philippe, David</au><au>Pons, Stéphane</au><au>Roditchev, Dimitri</au><au>Chapelier, Claude</au><au>Coraux, Johann</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>How to induce superconductivity in epitaxial graphene \(via\) remote proximity effect through an intercalated gold layer</atitle><jtitle>arXiv.org</jtitle><date>2020-09-28</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Graphene holds promises for exploring exotic superconductivity with Dirac-like fermions. Making graphene a superconductor at large scales is however a long-lasting challenge. A possible solution relies on epitaxially-grown graphene, using a superconducting substrate. Such substrates are scarce, and usually destroy the Dirac character of the electronic band structure. Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene \(via\) a remote proximity effect, from the rhenium substrate through an intercalated gold layer. Weak graphene-Au interaction, contrasting with the strong undesired graphene-Re interaction, is demonstrated by a reduced graphene corrugation, an increased distance between graphene and the underlying metal, a linear electronic dispersion and a characteristic vibrational signature, both latter features revealing also a slight \(p\) doping of graphene. We also reveal that the main shortcoming of the intercalation approach to proximity superconductivity is the creation of a high density of point defects in graphene (10\(^{14}\)~cm\(^{-2}\)). Finally, we demonstrate remote proximity superconductivity in graphene/Au/Re(0001), at low temperature.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2009.13176</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2447370304
source Free E- Journals
subjects Atomic beam spectroscopy
Atomic force microscopy
Density functional theory
Electron diffraction
Epitaxial growth
Fermions
Gold
Graphene
Low temperature
Microscopy
Photoelectric emission
Point defects
Proximity
Proximity effect (electricity)
Raman spectroscopy
Rhenium
Spectrum analysis
Substrates
Superconductivity
title How to induce superconductivity in epitaxial graphene \(via\) remote proximity effect through an intercalated gold layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=How%20to%20induce%20superconductivity%20in%20epitaxial%20graphene%20%5C(via%5C)%20remote%20proximity%20effect%20through%20an%20intercalated%20gold%20layer&rft.jtitle=arXiv.org&rft.au=Mazaleyrat,%20Estelle&rft.date=2020-09-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2009.13176&rft_dat=%3Cproquest%3E2447370304%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447370304&rft_id=info:pmid/&rfr_iscdi=true