Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems
We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles.
Gespeichert in:
Veröffentlicht in: | Ergodic theory and dynamical systems 2020-11, Vol.40 (11), p.2947-2969 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2969 |
---|---|
container_issue | 11 |
container_start_page | 2947 |
container_title | Ergodic theory and dynamical systems |
container_volume | 40 |
creator | BACKES, LUCAS POLETTI, MAURICIO VARANDAS, PAULO LIMA, YURI |
description | We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles. |
doi_str_mv | 10.1017/etds.2019.22 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447341343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_etds_2019_22</cupid><sourcerecordid>2447341343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-c68024a89601d05a8d63fdb5d78fe7f5171e22f227c56020949e04342e1843bf3</originalsourceid><addsrcrecordid>eNptkE1LxDAQQIMouK7e_AEBr7ZOPtq0R1n8ggUP6sFTaNOJdmmbmrQL_fe27IIXT3OYN2_gEXLNIGbA1B0OVYg5sDzm_ISsmEzzSEqmTskKmBSRyBJ1Ti5C2AGAYCpZkc-3uu2b2tTDRJ2l26nox87taejRDH5sqXWeNnWHhafGmck0GKjbo6ed66Kxq-d920z0e-rRl2420TCFAdtwSc5s0QS8Os41-Xh8eN88R9vXp5fN_TYyAvgQmTQDLossT4FVkBRZlQpblUmlMovKJkwx5NxyrkySAodc5ghSSI4sk6K0Yk1uDt7eu58Rw6B3bvTd_FJzKZWQTEgxU7cHyngXgkere1-3hZ80A73E00s8vcTTnM94fMSLtvR19YV_1n8PfgHx53Kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447341343</pqid></control><display><type>article</type><title>Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems</title><source>Cambridge University Press Journals Complete</source><creator>BACKES, LUCAS ; POLETTI, MAURICIO ; VARANDAS, PAULO ; LIMA, YURI</creator><creatorcontrib>BACKES, LUCAS ; POLETTI, MAURICIO ; VARANDAS, PAULO ; LIMA, YURI</creatorcontrib><description>We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/etds.2019.22</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Continuous fibers ; Hyperbolic systems ; Original Article</subject><ispartof>Ergodic theory and dynamical systems, 2020-11, Vol.40 (11), p.2947-2969</ispartof><rights>Cambridge University Press, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-c68024a89601d05a8d63fdb5d78fe7f5171e22f227c56020949e04342e1843bf3</citedby><cites>FETCH-LOGICAL-c302t-c68024a89601d05a8d63fdb5d78fe7f5171e22f227c56020949e04342e1843bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385719000221/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>BACKES, LUCAS</creatorcontrib><creatorcontrib>POLETTI, MAURICIO</creatorcontrib><creatorcontrib>VARANDAS, PAULO</creatorcontrib><creatorcontrib>LIMA, YURI</creatorcontrib><title>Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles.</description><subject>Continuous fibers</subject><subject>Hyperbolic systems</subject><subject>Original Article</subject><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkE1LxDAQQIMouK7e_AEBr7ZOPtq0R1n8ggUP6sFTaNOJdmmbmrQL_fe27IIXT3OYN2_gEXLNIGbA1B0OVYg5sDzm_ISsmEzzSEqmTskKmBSRyBJ1Ti5C2AGAYCpZkc-3uu2b2tTDRJ2l26nox87taejRDH5sqXWeNnWHhafGmck0GKjbo6ed66Kxq-d920z0e-rRl2420TCFAdtwSc5s0QS8Os41-Xh8eN88R9vXp5fN_TYyAvgQmTQDLossT4FVkBRZlQpblUmlMovKJkwx5NxyrkySAodc5ghSSI4sk6K0Yk1uDt7eu58Rw6B3bvTd_FJzKZWQTEgxU7cHyngXgkere1-3hZ80A73E00s8vcTTnM94fMSLtvR19YV_1n8PfgHx53Kg</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>BACKES, LUCAS</creator><creator>POLETTI, MAURICIO</creator><creator>VARANDAS, PAULO</creator><creator>LIMA, YURI</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>202011</creationdate><title>Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems</title><author>BACKES, LUCAS ; POLETTI, MAURICIO ; VARANDAS, PAULO ; LIMA, YURI</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-c68024a89601d05a8d63fdb5d78fe7f5171e22f227c56020949e04342e1843bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Continuous fibers</topic><topic>Hyperbolic systems</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BACKES, LUCAS</creatorcontrib><creatorcontrib>POLETTI, MAURICIO</creatorcontrib><creatorcontrib>VARANDAS, PAULO</creatorcontrib><creatorcontrib>LIMA, YURI</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BACKES, LUCAS</au><au>POLETTI, MAURICIO</au><au>VARANDAS, PAULO</au><au>LIMA, YURI</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2020-11</date><risdate>2020</risdate><volume>40</volume><issue>11</issue><spage>2947</spage><epage>2969</epage><pages>2947-2969</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>We prove that generic fiber-bunched and Hölder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a $u$-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched linear cocycles.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/etds.2019.22</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2020-11, Vol.40 (11), p.2947-2969 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_2447341343 |
source | Cambridge University Press Journals Complete |
subjects | Continuous fibers Hyperbolic systems Original Article |
title | Simplicity of Lyapunov spectrum for linear cocycles over non-uniformly hyperbolic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A52%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplicity%20of%20Lyapunov%20spectrum%20for%20linear%20cocycles%20over%20non-uniformly%20hyperbolic%20systems&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=BACKES,%20LUCAS&rft.date=2020-11&rft.volume=40&rft.issue=11&rft.spage=2947&rft.epage=2969&rft.pages=2947-2969&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/etds.2019.22&rft_dat=%3Cproquest_cross%3E2447341343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447341343&rft_id=info:pmid/&rft_cupid=10_1017_etds_2019_22&rfr_iscdi=true |