Design and modeling of PEM fuel cell based on different flow fields
It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage,...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2020-09, Vol.207, p.118331, Article 118331 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 118331 |
container_title | Energy (Oxford) |
container_volume | 207 |
creator | Pan, Mingzhang Li, Chao Liao, Jinyang Lei, Han Pan, Chengjie Meng, Xianpan Huang, Haozhong |
description | It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure.
•A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions. |
doi_str_mv | 10.1016/j.energy.2020.118331 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447304259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220314389</els_id><sourcerecordid>2447304259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA867JJtnNXgSp9Q9U9KDnkCaTkmWb1GSr9Nu7ZT17mYHhvTe8H0LXlJSU0Pq2KyFA2hzKilTjiUrG6AmaUdmwom6kOEUzwmpSCM6rc3SRc0cIEbJtZ2jxANlvAtbB4m200PuwwdHh9-UrdnvosYG-x2udweIYsPXOQYIwYNfHH-w89DZfojOn-wxXf3uOPh-XH4vnYvX29LK4XxWGMT4UmklTUQcN14wxkI4KLbg2ltTAxFoTylppqRYExsnXbcWttbqtpWwbTTWbo5spd5fi1x7yoLq4T2F8qSrOG0Z4JdpRxSeVSTHnBE7tkt_qdFCUqCMu1akJlzriUhOu0XY32WBs8O0hqWw8BAPWJzCDstH_H_AL8rlzwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447304259</pqid></control><display><type>article</type><title>Design and modeling of PEM fuel cell based on different flow fields</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Mingzhang ; Li, Chao ; Liao, Jinyang ; Lei, Han ; Pan, Chengjie ; Meng, Xianpan ; Huang, Haozhong</creator><creatorcontrib>Pan, Mingzhang ; Li, Chao ; Liao, Jinyang ; Lei, Han ; Pan, Chengjie ; Meng, Xianpan ; Huang, Haozhong</creatorcontrib><description>It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure.
•A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118331</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Circuits ; Current leakage ; Different flow fields ; Fuel cells ; Fuel technology ; Model development ; Modelling ; Ohmic overpotentials ; Open circuit voltage ; Proton exchange membrane fuel cells ; Regression analysis ; Voltage ; Working conditions</subject><ispartof>Energy (Oxford), 2020-09, Vol.207, p.118331, Article 118331</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</citedby><cites>FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544220314389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pan, Mingzhang</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liao, Jinyang</creatorcontrib><creatorcontrib>Lei, Han</creatorcontrib><creatorcontrib>Pan, Chengjie</creatorcontrib><creatorcontrib>Meng, Xianpan</creatorcontrib><creatorcontrib>Huang, Haozhong</creatorcontrib><title>Design and modeling of PEM fuel cell based on different flow fields</title><title>Energy (Oxford)</title><description>It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure.
•A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.</description><subject>Accuracy</subject><subject>Circuits</subject><subject>Current leakage</subject><subject>Different flow fields</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Model development</subject><subject>Modelling</subject><subject>Ohmic overpotentials</subject><subject>Open circuit voltage</subject><subject>Proton exchange membrane fuel cells</subject><subject>Regression analysis</subject><subject>Voltage</subject><subject>Working conditions</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA867JJtnNXgSp9Q9U9KDnkCaTkmWb1GSr9Nu7ZT17mYHhvTe8H0LXlJSU0Pq2KyFA2hzKilTjiUrG6AmaUdmwom6kOEUzwmpSCM6rc3SRc0cIEbJtZ2jxANlvAtbB4m200PuwwdHh9-UrdnvosYG-x2udweIYsPXOQYIwYNfHH-w89DZfojOn-wxXf3uOPh-XH4vnYvX29LK4XxWGMT4UmklTUQcN14wxkI4KLbg2ltTAxFoTylppqRYExsnXbcWttbqtpWwbTTWbo5spd5fi1x7yoLq4T2F8qSrOG0Z4JdpRxSeVSTHnBE7tkt_qdFCUqCMu1akJlzriUhOu0XY32WBs8O0hqWw8BAPWJzCDstH_H_AL8rlzwQ</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Pan, Mingzhang</creator><creator>Li, Chao</creator><creator>Liao, Jinyang</creator><creator>Lei, Han</creator><creator>Pan, Chengjie</creator><creator>Meng, Xianpan</creator><creator>Huang, Haozhong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200915</creationdate><title>Design and modeling of PEM fuel cell based on different flow fields</title><author>Pan, Mingzhang ; Li, Chao ; Liao, Jinyang ; Lei, Han ; Pan, Chengjie ; Meng, Xianpan ; Huang, Haozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Circuits</topic><topic>Current leakage</topic><topic>Different flow fields</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Model development</topic><topic>Modelling</topic><topic>Ohmic overpotentials</topic><topic>Open circuit voltage</topic><topic>Proton exchange membrane fuel cells</topic><topic>Regression analysis</topic><topic>Voltage</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Mingzhang</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liao, Jinyang</creatorcontrib><creatorcontrib>Lei, Han</creatorcontrib><creatorcontrib>Pan, Chengjie</creatorcontrib><creatorcontrib>Meng, Xianpan</creatorcontrib><creatorcontrib>Huang, Haozhong</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Mingzhang</au><au>Li, Chao</au><au>Liao, Jinyang</au><au>Lei, Han</au><au>Pan, Chengjie</au><au>Meng, Xianpan</au><au>Huang, Haozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and modeling of PEM fuel cell based on different flow fields</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>207</volume><spage>118331</spage><pages>118331-</pages><artnum>118331</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure.
•A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118331</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2020-09, Vol.207, p.118331, Article 118331 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2447304259 |
source | Elsevier ScienceDirect Journals |
subjects | Accuracy Circuits Current leakage Different flow fields Fuel cells Fuel technology Model development Modelling Ohmic overpotentials Open circuit voltage Proton exchange membrane fuel cells Regression analysis Voltage Working conditions |
title | Design and modeling of PEM fuel cell based on different flow fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20modeling%20of%20PEM%20fuel%20cell%20based%20on%20different%20flow%20fields&rft.jtitle=Energy%20(Oxford)&rft.au=Pan,%20Mingzhang&rft.date=2020-09-15&rft.volume=207&rft.spage=118331&rft.pages=118331-&rft.artnum=118331&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118331&rft_dat=%3Cproquest_cross%3E2447304259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447304259&rft_id=info:pmid/&rft_els_id=S0360544220314389&rfr_iscdi=true |