Design and modeling of PEM fuel cell based on different flow fields

It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2020-09, Vol.207, p.118331, Article 118331
Hauptverfasser: Pan, Mingzhang, Li, Chao, Liao, Jinyang, Lei, Han, Pan, Chengjie, Meng, Xianpan, Huang, Haozhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118331
container_title Energy (Oxford)
container_volume 207
creator Pan, Mingzhang
Li, Chao
Liao, Jinyang
Lei, Han
Pan, Chengjie
Meng, Xianpan
Huang, Haozhong
description It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure. •A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.
doi_str_mv 10.1016/j.energy.2020.118331
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447304259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544220314389</els_id><sourcerecordid>2447304259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKvfwEPA867JJtnNXgSp9Q9U9KDnkCaTkmWb1GSr9Nu7ZT17mYHhvTe8H0LXlJSU0Pq2KyFA2hzKilTjiUrG6AmaUdmwom6kOEUzwmpSCM6rc3SRc0cIEbJtZ2jxANlvAtbB4m200PuwwdHh9-UrdnvosYG-x2udweIYsPXOQYIwYNfHH-w89DZfojOn-wxXf3uOPh-XH4vnYvX29LK4XxWGMT4UmklTUQcN14wxkI4KLbg2ltTAxFoTylppqRYExsnXbcWttbqtpWwbTTWbo5spd5fi1x7yoLq4T2F8qSrOG0Z4JdpRxSeVSTHnBE7tkt_qdFCUqCMu1akJlzriUhOu0XY32WBs8O0hqWw8BAPWJzCDstH_H_AL8rlzwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447304259</pqid></control><display><type>article</type><title>Design and modeling of PEM fuel cell based on different flow fields</title><source>Elsevier ScienceDirect Journals</source><creator>Pan, Mingzhang ; Li, Chao ; Liao, Jinyang ; Lei, Han ; Pan, Chengjie ; Meng, Xianpan ; Huang, Haozhong</creator><creatorcontrib>Pan, Mingzhang ; Li, Chao ; Liao, Jinyang ; Lei, Han ; Pan, Chengjie ; Meng, Xianpan ; Huang, Haozhong</creatorcontrib><description>It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure. •A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2020.118331</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Accuracy ; Circuits ; Current leakage ; Different flow fields ; Fuel cells ; Fuel technology ; Model development ; Modelling ; Ohmic overpotentials ; Open circuit voltage ; Proton exchange membrane fuel cells ; Regression analysis ; Voltage ; Working conditions</subject><ispartof>Energy (Oxford), 2020-09, Vol.207, p.118331, Article 118331</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</citedby><cites>FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544220314389$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Pan, Mingzhang</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liao, Jinyang</creatorcontrib><creatorcontrib>Lei, Han</creatorcontrib><creatorcontrib>Pan, Chengjie</creatorcontrib><creatorcontrib>Meng, Xianpan</creatorcontrib><creatorcontrib>Huang, Haozhong</creatorcontrib><title>Design and modeling of PEM fuel cell based on different flow fields</title><title>Energy (Oxford)</title><description>It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure. •A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.</description><subject>Accuracy</subject><subject>Circuits</subject><subject>Current leakage</subject><subject>Different flow fields</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Model development</subject><subject>Modelling</subject><subject>Ohmic overpotentials</subject><subject>Open circuit voltage</subject><subject>Proton exchange membrane fuel cells</subject><subject>Regression analysis</subject><subject>Voltage</subject><subject>Working conditions</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKvfwEPA867JJtnNXgSp9Q9U9KDnkCaTkmWb1GSr9Nu7ZT17mYHhvTe8H0LXlJSU0Pq2KyFA2hzKilTjiUrG6AmaUdmwom6kOEUzwmpSCM6rc3SRc0cIEbJtZ2jxANlvAtbB4m200PuwwdHh9-UrdnvosYG-x2udweIYsPXOQYIwYNfHH-w89DZfojOn-wxXf3uOPh-XH4vnYvX29LK4XxWGMT4UmklTUQcN14wxkI4KLbg2ltTAxFoTylppqRYExsnXbcWttbqtpWwbTTWbo5spd5fi1x7yoLq4T2F8qSrOG0Z4JdpRxSeVSTHnBE7tkt_qdFCUqCMu1akJlzriUhOu0XY32WBs8O0hqWw8BAPWJzCDstH_H_AL8rlzwQ</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Pan, Mingzhang</creator><creator>Li, Chao</creator><creator>Liao, Jinyang</creator><creator>Lei, Han</creator><creator>Pan, Chengjie</creator><creator>Meng, Xianpan</creator><creator>Huang, Haozhong</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200915</creationdate><title>Design and modeling of PEM fuel cell based on different flow fields</title><author>Pan, Mingzhang ; Li, Chao ; Liao, Jinyang ; Lei, Han ; Pan, Chengjie ; Meng, Xianpan ; Huang, Haozhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a38c21fe74a333e8f15a54acd06e35ba01398d1a50ed1a4b924ddda968897a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Circuits</topic><topic>Current leakage</topic><topic>Different flow fields</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Model development</topic><topic>Modelling</topic><topic>Ohmic overpotentials</topic><topic>Open circuit voltage</topic><topic>Proton exchange membrane fuel cells</topic><topic>Regression analysis</topic><topic>Voltage</topic><topic>Working conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Mingzhang</creatorcontrib><creatorcontrib>Li, Chao</creatorcontrib><creatorcontrib>Liao, Jinyang</creatorcontrib><creatorcontrib>Lei, Han</creatorcontrib><creatorcontrib>Pan, Chengjie</creatorcontrib><creatorcontrib>Meng, Xianpan</creatorcontrib><creatorcontrib>Huang, Haozhong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Mingzhang</au><au>Li, Chao</au><au>Liao, Jinyang</au><au>Lei, Han</au><au>Pan, Chengjie</au><au>Meng, Xianpan</au><au>Huang, Haozhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and modeling of PEM fuel cell based on different flow fields</atitle><jtitle>Energy (Oxford)</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>207</volume><spage>118331</spage><pages>118331-</pages><artnum>118331</artnum><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>It is necessary to investigate the designs of model to maximize the performance of proton exchange membrane fuel cell (PEMFC). In this study, a novel design and modeling method are proposed based on different flow fields. The proposed model considers the voltage losses caused by the current leakage, gas crossover, and by-product pollution. A regression analysis is conducted to study the influence of the working conditions on the accuracy. Final results showed that the coefficient of determination increased both from 0.977 to 0.952 to 0.998 at 50 °C and 70 °C, respectively. The prediction accuracy for the open-circuit voltage and low-current density is significantly improved. In addition, the prediction accuracy of different impedance materials decreases with increasing temperature and pressure. •A model for the performance prediction of PEMFCs with different flow fields.•The proposed model exhibits an accurate predictability under full load.•The contribution of the electron conduction resistance can be calculated.•A regression analysis has been conducted to study the working conditions.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2020.118331</doi></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2020-09, Vol.207, p.118331, Article 118331
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2447304259
source Elsevier ScienceDirect Journals
subjects Accuracy
Circuits
Current leakage
Different flow fields
Fuel cells
Fuel technology
Model development
Modelling
Ohmic overpotentials
Open circuit voltage
Proton exchange membrane fuel cells
Regression analysis
Voltage
Working conditions
title Design and modeling of PEM fuel cell based on different flow fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A32%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20modeling%20of%20PEM%20fuel%20cell%20based%20on%20different%20flow%20fields&rft.jtitle=Energy%20(Oxford)&rft.au=Pan,%20Mingzhang&rft.date=2020-09-15&rft.volume=207&rft.spage=118331&rft.pages=118331-&rft.artnum=118331&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2020.118331&rft_dat=%3Cproquest_cross%3E2447304259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447304259&rft_id=info:pmid/&rft_els_id=S0360544220314389&rfr_iscdi=true