Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass

Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel processing technology 2020-11, Vol.208, p.106515, Article 106515
Hauptverfasser: Jaffar, Mohammad M., Nahil, Mohamad A., Williams, Paul T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106515
container_title Fuel processing technology
container_volume 208
creator Jaffar, Mohammad M.
Nahil, Mohamad A.
Williams, Paul T.
description Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst. [Display omitted] •Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.
doi_str_mv 10.1016/j.fuproc.2020.106515
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447303879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382020308067</els_id><sourcerecordid>2447303879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFMGBrJ38QQ6CXOzDbFqah7SXgDHOAww5JDmLXqlnrWVntJE0DvMZ-eNomFx88UE0pa6qpoqx9wK2AkT38bjtp3MMditBLl9dK9pXbCO0qisltL5gG6iVrmot4Q27TOkIAG27Uxv298c85kfK3vIR8xTxxA-YeHFzk80-jLyPYeCFUl4k4injgfi1v-HnOYbTnHwqqECLGU_zYpQy4cAj9SEOfjws62f7x9nFcKByb_EPPf-DRcL3PgyY0lv2usdTonf_5xX79fn-593X6uH7l293tw-VrTXkilrZSURwwmHbkbDQN6h2COAkltG3CjqSe9egECCV3tvaLchpdCRVfcU-rL4l6--JUjbHMMWxnDSyaVQNtVa7wmpWlo0hpZLJnKMfMM5GgFnKN0ezlm-W8s1afpF9WmVUEjx5iiZZT6Ml5yPZbFzwLxv8A9Q6knc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447303879</pqid></control><display><type>article</type><title>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</title><source>Elsevier ScienceDirect Journals</source><creator>Jaffar, Mohammad M. ; Nahil, Mohamad A. ; Williams, Paul T.</creator><creatorcontrib>Jaffar, Mohammad M. ; Nahil, Mohamad A. ; Williams, Paul T.</creatorcontrib><description>Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst. [Display omitted] •Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2020.106515</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Biomass ; Catalysts ; Hydrogen storage ; Hydrogenation ; Iron ; Methanation ; Methane ; Molybdenum ; Natural gas ; Natural gas industry ; Nickel ; Optimization ; Parameters ; Pyrolysis ; Reforming ; Silicon dioxide ; Substitute natural gas</subject><ispartof>Fuel processing technology, 2020-11, Vol.208, p.106515, Article 106515</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</citedby><cites>FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2020.106515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jaffar, Mohammad M.</creatorcontrib><creatorcontrib>Nahil, Mohamad A.</creatorcontrib><creatorcontrib>Williams, Paul T.</creatorcontrib><title>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</title><title>Fuel processing technology</title><description>Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst. [Display omitted] •Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.</description><subject>Aluminum oxide</subject><subject>Biomass</subject><subject>Catalysts</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Iron</subject><subject>Methanation</subject><subject>Methane</subject><subject>Molybdenum</subject><subject>Natural gas</subject><subject>Natural gas industry</subject><subject>Nickel</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pyrolysis</subject><subject>Reforming</subject><subject>Silicon dioxide</subject><subject>Substitute natural gas</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFMGBrJ38QQ6CXOzDbFqah7SXgDHOAww5JDmLXqlnrWVntJE0DvMZ-eNomFx88UE0pa6qpoqx9wK2AkT38bjtp3MMditBLl9dK9pXbCO0qisltL5gG6iVrmot4Q27TOkIAG27Uxv298c85kfK3vIR8xTxxA-YeHFzk80-jLyPYeCFUl4k4injgfi1v-HnOYbTnHwqqECLGU_zYpQy4cAj9SEOfjws62f7x9nFcKByb_EPPf-DRcL3PgyY0lv2usdTonf_5xX79fn-593X6uH7l293tw-VrTXkilrZSURwwmHbkbDQN6h2COAkltG3CjqSe9egECCV3tvaLchpdCRVfcU-rL4l6--JUjbHMMWxnDSyaVQNtVa7wmpWlo0hpZLJnKMfMM5GgFnKN0ezlm-W8s1afpF9WmVUEjx5iiZZT6Ml5yPZbFzwLxv8A9Q6knc</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Jaffar, Mohammad M.</creator><creator>Nahil, Mohamad A.</creator><creator>Williams, Paul T.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202011</creationdate><title>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</title><author>Jaffar, Mohammad M. ; Nahil, Mohamad A. ; Williams, Paul T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Biomass</topic><topic>Catalysts</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Iron</topic><topic>Methanation</topic><topic>Methane</topic><topic>Molybdenum</topic><topic>Natural gas</topic><topic>Natural gas industry</topic><topic>Nickel</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pyrolysis</topic><topic>Reforming</topic><topic>Silicon dioxide</topic><topic>Substitute natural gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffar, Mohammad M.</creatorcontrib><creatorcontrib>Nahil, Mohamad A.</creatorcontrib><creatorcontrib>Williams, Paul T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffar, Mohammad M.</au><au>Nahil, Mohamad A.</au><au>Williams, Paul T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</atitle><jtitle>Fuel processing technology</jtitle><date>2020-11</date><risdate>2020</risdate><volume>208</volume><spage>106515</spage><pages>106515-</pages><artnum>106515</artnum><issn>0378-3820</issn><eissn>1873-7188</eissn><abstract>Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst. [Display omitted] •Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2020.106515</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-3820
ispartof Fuel processing technology, 2020-11, Vol.208, p.106515, Article 106515
issn 0378-3820
1873-7188
language eng
recordid cdi_proquest_journals_2447303879
source Elsevier ScienceDirect Journals
subjects Aluminum oxide
Biomass
Catalysts
Hydrogen storage
Hydrogenation
Iron
Methanation
Methane
Molybdenum
Natural gas
Natural gas industry
Nickel
Optimization
Parameters
Pyrolysis
Reforming
Silicon dioxide
Substitute natural gas
title Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20natural%20gas%20production%20from%20the%20three%20stage%20(i)%20pyrolysis%20(ii)%20catalytic%20steam%20reforming%20(iii)%20catalytic%20hydrogenation%20of%20waste%20biomass&rft.jtitle=Fuel%20processing%20technology&rft.au=Jaffar,%20Mohammad%20M.&rft.date=2020-11&rft.volume=208&rft.spage=106515&rft.pages=106515-&rft.artnum=106515&rft.issn=0378-3820&rft.eissn=1873-7188&rft_id=info:doi/10.1016/j.fuproc.2020.106515&rft_dat=%3Cproquest_cross%3E2447303879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447303879&rft_id=info:pmid/&rft_els_id=S0378382020308067&rfr_iscdi=true