Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass
Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic...
Gespeichert in:
Veröffentlicht in: | Fuel processing technology 2020-11, Vol.208, p.106515, Article 106515 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 106515 |
container_title | Fuel processing technology |
container_volume | 208 |
creator | Jaffar, Mohammad M. Nahil, Mohamad A. Williams, Paul T. |
description | Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst.
[Display omitted]
•Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass. |
doi_str_mv | 10.1016/j.fuproc.2020.106515 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447303879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378382020308067</els_id><sourcerecordid>2447303879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</originalsourceid><addsrcrecordid>eNp9UMtqHDEQFMGBrJ38QQ6CXOzDbFqah7SXgDHOAww5JDmLXqlnrWVntJE0DvMZ-eNomFx88UE0pa6qpoqx9wK2AkT38bjtp3MMditBLl9dK9pXbCO0qisltL5gG6iVrmot4Q27TOkIAG27Uxv298c85kfK3vIR8xTxxA-YeHFzk80-jLyPYeCFUl4k4injgfi1v-HnOYbTnHwqqECLGU_zYpQy4cAj9SEOfjws62f7x9nFcKByb_EPPf-DRcL3PgyY0lv2usdTonf_5xX79fn-593X6uH7l293tw-VrTXkilrZSURwwmHbkbDQN6h2COAkltG3CjqSe9egECCV3tvaLchpdCRVfcU-rL4l6--JUjbHMMWxnDSyaVQNtVa7wmpWlo0hpZLJnKMfMM5GgFnKN0ezlm-W8s1afpF9WmVUEjx5iiZZT6Ml5yPZbFzwLxv8A9Q6knc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447303879</pqid></control><display><type>article</type><title>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</title><source>Elsevier ScienceDirect Journals</source><creator>Jaffar, Mohammad M. ; Nahil, Mohamad A. ; Williams, Paul T.</creator><creatorcontrib>Jaffar, Mohammad M. ; Nahil, Mohamad A. ; Williams, Paul T.</creatorcontrib><description>Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst.
[Display omitted]
•Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.</description><identifier>ISSN: 0378-3820</identifier><identifier>EISSN: 1873-7188</identifier><identifier>DOI: 10.1016/j.fuproc.2020.106515</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminum oxide ; Biomass ; Catalysts ; Hydrogen storage ; Hydrogenation ; Iron ; Methanation ; Methane ; Molybdenum ; Natural gas ; Natural gas industry ; Nickel ; Optimization ; Parameters ; Pyrolysis ; Reforming ; Silicon dioxide ; Substitute natural gas</subject><ispartof>Fuel processing technology, 2020-11, Vol.208, p.106515, Article 106515</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</citedby><cites>FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuproc.2020.106515$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Jaffar, Mohammad M.</creatorcontrib><creatorcontrib>Nahil, Mohamad A.</creatorcontrib><creatorcontrib>Williams, Paul T.</creatorcontrib><title>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</title><title>Fuel processing technology</title><description>Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst.
[Display omitted]
•Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.</description><subject>Aluminum oxide</subject><subject>Biomass</subject><subject>Catalysts</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Iron</subject><subject>Methanation</subject><subject>Methane</subject><subject>Molybdenum</subject><subject>Natural gas</subject><subject>Natural gas industry</subject><subject>Nickel</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pyrolysis</subject><subject>Reforming</subject><subject>Silicon dioxide</subject><subject>Substitute natural gas</subject><issn>0378-3820</issn><issn>1873-7188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtqHDEQFMGBrJ38QQ6CXOzDbFqah7SXgDHOAww5JDmLXqlnrWVntJE0DvMZ-eNomFx88UE0pa6qpoqx9wK2AkT38bjtp3MMditBLl9dK9pXbCO0qisltL5gG6iVrmot4Q27TOkIAG27Uxv298c85kfK3vIR8xTxxA-YeHFzk80-jLyPYeCFUl4k4injgfi1v-HnOYbTnHwqqECLGU_zYpQy4cAj9SEOfjws62f7x9nFcKByb_EPPf-DRcL3PgyY0lv2usdTonf_5xX79fn-593X6uH7l293tw-VrTXkilrZSURwwmHbkbDQN6h2COAkltG3CjqSe9egECCV3tvaLchpdCRVfcU-rL4l6--JUjbHMMWxnDSyaVQNtVa7wmpWlo0hpZLJnKMfMM5GgFnKN0ezlm-W8s1afpF9WmVUEjx5iiZZT6Ml5yPZbFzwLxv8A9Q6knc</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Jaffar, Mohammad M.</creator><creator>Nahil, Mohamad A.</creator><creator>Williams, Paul T.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202011</creationdate><title>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</title><author>Jaffar, Mohammad M. ; Nahil, Mohamad A. ; Williams, Paul T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-e5262aa0d1da56e1c0f4a79a00d2a9a0f5706e2bd4a110278bc3dbd4ad8ade273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum oxide</topic><topic>Biomass</topic><topic>Catalysts</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Iron</topic><topic>Methanation</topic><topic>Methane</topic><topic>Molybdenum</topic><topic>Natural gas</topic><topic>Natural gas industry</topic><topic>Nickel</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pyrolysis</topic><topic>Reforming</topic><topic>Silicon dioxide</topic><topic>Substitute natural gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaffar, Mohammad M.</creatorcontrib><creatorcontrib>Nahil, Mohamad A.</creatorcontrib><creatorcontrib>Williams, Paul T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jaffar, Mohammad M.</au><au>Nahil, Mohamad A.</au><au>Williams, Paul T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass</atitle><jtitle>Fuel processing technology</jtitle><date>2020-11</date><risdate>2020</risdate><volume>208</volume><spage>106515</spage><pages>106515-</pages><artnum>106515</artnum><issn>0378-3820</issn><eissn>1873-7188</eissn><abstract>Synthetic natural gas (methane) production was systematically investigated by optimizing various operating parameters using a three stage (i) biomass pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation reactor system. Several operating parameters were optimized including catalytic steam reforming temperature, steam weight hourly space velocity (WHSV), catalytic hydrogenation temperature and hydrogen gas space velocity. In addition, the influence of different metal catalysts (Ni/Al2O3, Fe/Al2O3, Co/Al2O3, and Mo/Al2O3), catalyst calcination temperature, catalyst metal loadings, and different catalyst support materials (Al2O3, SiO2, and MCM-41) was carried out specifically to optimize catalytic hydrogenation in the third stage reactor. The highest methane yield of 13.73 mmoles g−1biomass (22.02 g CH4 100 g−1biomass) was obtained with a second stage catalytic steam reforming temperature of 800 °C over a 10 wt% Ni/Al2O3 catalyst and with a steam WHSV of 5 mL h−1 g−1catalyst together with a third stage catalytic hydrogenation temperature of 350 °C over a 10 wt% Ni/Al2O3 catalyst with added hydrogen gas space velocity of 2400 mL h−1 g−1catalyst.
[Display omitted]
•Novel 3-stage (i) pyrolysis (ii) reforming (iii) hydrogenation developed for CH4•Catalytic steam reforming pyrolysis gases produces COx for catalytic hydrogenation.•Optimized CH4 yield from biomass with Ni-metal and Al2O3, support material•Maximum CH4 yield was 22.02 g CH4 100 g−1biomass.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fuproc.2020.106515</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-3820 |
ispartof | Fuel processing technology, 2020-11, Vol.208, p.106515, Article 106515 |
issn | 0378-3820 1873-7188 |
language | eng |
recordid | cdi_proquest_journals_2447303879 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum oxide Biomass Catalysts Hydrogen storage Hydrogenation Iron Methanation Methane Molybdenum Natural gas Natural gas industry Nickel Optimization Parameters Pyrolysis Reforming Silicon dioxide Substitute natural gas |
title | Synthetic natural gas production from the three stage (i) pyrolysis (ii) catalytic steam reforming (iii) catalytic hydrogenation of waste biomass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20natural%20gas%20production%20from%20the%20three%20stage%20(i)%20pyrolysis%20(ii)%20catalytic%20steam%20reforming%20(iii)%20catalytic%20hydrogenation%20of%20waste%20biomass&rft.jtitle=Fuel%20processing%20technology&rft.au=Jaffar,%20Mohammad%20M.&rft.date=2020-11&rft.volume=208&rft.spage=106515&rft.pages=106515-&rft.artnum=106515&rft.issn=0378-3820&rft.eissn=1873-7188&rft_id=info:doi/10.1016/j.fuproc.2020.106515&rft_dat=%3Cproquest_cross%3E2447303879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447303879&rft_id=info:pmid/&rft_els_id=S0378382020308067&rfr_iscdi=true |