Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems
Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have...
Gespeichert in:
Veröffentlicht in: | Calphad 2020-09, Vol.70, p.101807, Article 101807 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 101807 |
container_title | Calphad |
container_volume | 70 |
creator | Shevchenko, M. Jak, E. |
description | Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated. |
doi_str_mv | 10.1016/j.calphad.2020.101807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447303841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591620300729</els_id><sourcerecordid>2447303841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-ghBw3TF_TdKVyOAfDIzgiMuQJimTMm1qUoVx5Tv4hj6JHTsbV27uhcs5h3M_AM4xmmGE-WU9M3rTrbWdEUR-bxKJAzDBUtCMFJIdggminGV5gfkxOEmpRggJStkEvKzWLjbBblvdeAND1_vGf-jehxaGCvZrB0vf6riFj-Xy-_NrrpdQtxb2Lv69DvPJLwlM29S7Jp2Co0pvkjvb7yl4vr1Zze-zxfLuYX69yAylos9kJSrBiCTaCUEI4nmhWSGq0iFhKBe5LXNuERNUlIQXhOLCGisEriRn0jo6BRdjbhfD65tLvarD21BtkxRhgw1RyfCgykeViSGl6CrVRd8M_RVGasdQ1WrPUO0YqpHh4LsafW544d27qJLxrjXO-uhMr2zw_yT8ADUefg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447303841</pqid></control><display><type>article</type><title>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</title><source>Elsevier ScienceDirect Journals</source><creator>Shevchenko, M. ; Jak, E.</creator><creatorcontrib>Shevchenko, M. ; Jak, E.</creatorcontrib><description>Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2020.101807</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Calcium ; Calcium oxide ; Cristobalite ; Lead ; Lead silicate ; Liquidus ; Optimization ; Parameters ; Phase diagrams ; Phase equilibria ; Pseudowollastonite ; Silica ; Silicates ; Silicon dioxide ; Slags ; Ternary systems ; Thermodynamic assessment ; Thermodynamic equilibrium ; Thermodynamic models ; Tridymite ; Wollastonite ; Zinc oxide</subject><ispartof>Calphad, 2020-09, Vol.70, p.101807, Article 101807</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</citedby><cites>FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</cites><orcidid>0000-0002-9420-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0364591620300729$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shevchenko, M.</creatorcontrib><creatorcontrib>Jak, E.</creatorcontrib><title>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</title><title>Calphad</title><description>Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.</description><subject>Calcium</subject><subject>Calcium oxide</subject><subject>Cristobalite</subject><subject>Lead</subject><subject>Lead silicate</subject><subject>Liquidus</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Phase equilibria</subject><subject>Pseudowollastonite</subject><subject>Silica</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><subject>Slags</subject><subject>Ternary systems</subject><subject>Thermodynamic assessment</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic models</subject><subject>Tridymite</subject><subject>Wollastonite</subject><subject>Zinc oxide</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-ghBw3TF_TdKVyOAfDIzgiMuQJimTMm1qUoVx5Tv4hj6JHTsbV27uhcs5h3M_AM4xmmGE-WU9M3rTrbWdEUR-bxKJAzDBUtCMFJIdggminGV5gfkxOEmpRggJStkEvKzWLjbBblvdeAND1_vGf-jehxaGCvZrB0vf6riFj-Xy-_NrrpdQtxb2Lv69DvPJLwlM29S7Jp2Co0pvkjvb7yl4vr1Zze-zxfLuYX69yAylos9kJSrBiCTaCUEI4nmhWSGq0iFhKBe5LXNuERNUlIQXhOLCGisEriRn0jo6BRdjbhfD65tLvarD21BtkxRhgw1RyfCgykeViSGl6CrVRd8M_RVGasdQ1WrPUO0YqpHh4LsafW544d27qJLxrjXO-uhMr2zw_yT8ADUefg4</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Shevchenko, M.</creator><creator>Jak, E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9420-9336</orcidid></search><sort><creationdate>202009</creationdate><title>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</title><author>Shevchenko, M. ; Jak, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium</topic><topic>Calcium oxide</topic><topic>Cristobalite</topic><topic>Lead</topic><topic>Lead silicate</topic><topic>Liquidus</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Phase equilibria</topic><topic>Pseudowollastonite</topic><topic>Silica</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><topic>Slags</topic><topic>Ternary systems</topic><topic>Thermodynamic assessment</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic models</topic><topic>Tridymite</topic><topic>Wollastonite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shevchenko, M.</creatorcontrib><creatorcontrib>Jak, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shevchenko, M.</au><au>Jak, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</atitle><jtitle>Calphad</jtitle><date>2020-09</date><risdate>2020</risdate><volume>70</volume><spage>101807</spage><pages>101807-</pages><artnum>101807</artnum><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2020.101807</doi><orcidid>https://orcid.org/0000-0002-9420-9336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-5916 |
ispartof | Calphad, 2020-09, Vol.70, p.101807, Article 101807 |
issn | 0364-5916 1873-2984 |
language | eng |
recordid | cdi_proquest_journals_2447303841 |
source | Elsevier ScienceDirect Journals |
subjects | Calcium Calcium oxide Cristobalite Lead Lead silicate Liquidus Optimization Parameters Phase diagrams Phase equilibria Pseudowollastonite Silica Silicates Silicon dioxide Slags Ternary systems Thermodynamic assessment Thermodynamic equilibrium Thermodynamic models Tridymite Wollastonite Zinc oxide |
title | Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20optimization%20of%20the%20binary%20PbO%E2%80%93CaO%20and%20ternary%20PbO%E2%80%93CaO%E2%80%93SiO2%20systems&rft.jtitle=Calphad&rft.au=Shevchenko,%20M.&rft.date=2020-09&rft.volume=70&rft.spage=101807&rft.pages=101807-&rft.artnum=101807&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2020.101807&rft_dat=%3Cproquest_cross%3E2447303841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447303841&rft_id=info:pmid/&rft_els_id=S0364591620300729&rfr_iscdi=true |