Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems

Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calphad 2020-09, Vol.70, p.101807, Article 101807
Hauptverfasser: Shevchenko, M., Jak, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101807
container_title Calphad
container_volume 70
creator Shevchenko, M.
Jak, E.
description Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.
doi_str_mv 10.1016/j.calphad.2020.101807
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447303841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0364591620300729</els_id><sourcerecordid>2447303841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</originalsourceid><addsrcrecordid>eNqFkM1KxDAUhYMoOI4-ghBw3TF_TdKVyOAfDIzgiMuQJimTMm1qUoVx5Tv4hj6JHTsbV27uhcs5h3M_AM4xmmGE-WU9M3rTrbWdEUR-bxKJAzDBUtCMFJIdggminGV5gfkxOEmpRggJStkEvKzWLjbBblvdeAND1_vGf-jehxaGCvZrB0vf6riFj-Xy-_NrrpdQtxb2Lv69DvPJLwlM29S7Jp2Co0pvkjvb7yl4vr1Zze-zxfLuYX69yAylos9kJSrBiCTaCUEI4nmhWSGq0iFhKBe5LXNuERNUlIQXhOLCGisEriRn0jo6BRdjbhfD65tLvarD21BtkxRhgw1RyfCgykeViSGl6CrVRd8M_RVGasdQ1WrPUO0YqpHh4LsafW544d27qJLxrjXO-uhMr2zw_yT8ADUefg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447303841</pqid></control><display><type>article</type><title>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</title><source>Elsevier ScienceDirect Journals</source><creator>Shevchenko, M. ; Jak, E.</creator><creatorcontrib>Shevchenko, M. ; Jak, E.</creatorcontrib><description>Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.</description><identifier>ISSN: 0364-5916</identifier><identifier>EISSN: 1873-2984</identifier><identifier>DOI: 10.1016/j.calphad.2020.101807</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Calcium ; Calcium oxide ; Cristobalite ; Lead ; Lead silicate ; Liquidus ; Optimization ; Parameters ; Phase diagrams ; Phase equilibria ; Pseudowollastonite ; Silica ; Silicates ; Silicon dioxide ; Slags ; Ternary systems ; Thermodynamic assessment ; Thermodynamic equilibrium ; Thermodynamic models ; Tridymite ; Wollastonite ; Zinc oxide</subject><ispartof>Calphad, 2020-09, Vol.70, p.101807, Article 101807</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</citedby><cites>FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</cites><orcidid>0000-0002-9420-9336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0364591620300729$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Shevchenko, M.</creatorcontrib><creatorcontrib>Jak, E.</creatorcontrib><title>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</title><title>Calphad</title><description>Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.</description><subject>Calcium</subject><subject>Calcium oxide</subject><subject>Cristobalite</subject><subject>Lead</subject><subject>Lead silicate</subject><subject>Liquidus</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Phase diagrams</subject><subject>Phase equilibria</subject><subject>Pseudowollastonite</subject><subject>Silica</subject><subject>Silicates</subject><subject>Silicon dioxide</subject><subject>Slags</subject><subject>Ternary systems</subject><subject>Thermodynamic assessment</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamic models</subject><subject>Tridymite</subject><subject>Wollastonite</subject><subject>Zinc oxide</subject><issn>0364-5916</issn><issn>1873-2984</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KxDAUhYMoOI4-ghBw3TF_TdKVyOAfDIzgiMuQJimTMm1qUoVx5Tv4hj6JHTsbV27uhcs5h3M_AM4xmmGE-WU9M3rTrbWdEUR-bxKJAzDBUtCMFJIdggminGV5gfkxOEmpRggJStkEvKzWLjbBblvdeAND1_vGf-jehxaGCvZrB0vf6riFj-Xy-_NrrpdQtxb2Lv69DvPJLwlM29S7Jp2Co0pvkjvb7yl4vr1Zze-zxfLuYX69yAylos9kJSrBiCTaCUEI4nmhWSGq0iFhKBe5LXNuERNUlIQXhOLCGisEriRn0jo6BRdjbhfD65tLvarD21BtkxRhgw1RyfCgykeViSGl6CrVRd8M_RVGasdQ1WrPUO0YqpHh4LsafW544d27qJLxrjXO-uhMr2zw_yT8ADUefg4</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Shevchenko, M.</creator><creator>Jak, E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9420-9336</orcidid></search><sort><creationdate>202009</creationdate><title>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</title><author>Shevchenko, M. ; Jak, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8f7f74282ae77220659a497fbe07c3675db56d04737b2692319dcd771f8648de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium</topic><topic>Calcium oxide</topic><topic>Cristobalite</topic><topic>Lead</topic><topic>Lead silicate</topic><topic>Liquidus</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Phase diagrams</topic><topic>Phase equilibria</topic><topic>Pseudowollastonite</topic><topic>Silica</topic><topic>Silicates</topic><topic>Silicon dioxide</topic><topic>Slags</topic><topic>Ternary systems</topic><topic>Thermodynamic assessment</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamic models</topic><topic>Tridymite</topic><topic>Wollastonite</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shevchenko, M.</creatorcontrib><creatorcontrib>Jak, E.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Calphad</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shevchenko, M.</au><au>Jak, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems</atitle><jtitle>Calphad</jtitle><date>2020-09</date><risdate>2020</risdate><volume>70</volume><spage>101807</spage><pages>101807-</pages><artnum>101807</artnum><issn>0364-5916</issn><eissn>1873-2984</eissn><abstract>Liquidus phase equilibrium data from the recent study for the PbO–CaO and the PbO–CaO–SiO2 systems (as a part of research program on the characterization of the multicomponent PbO–ZnO–FeO–Fe2O3-“Cu2O”-CaO-SiO2 system), combined with phase equilibrium and thermodynamic data from the literature, have been used to obtain a self-consistent set of parameters of the thermodynamic models for all phases: liquid, (Ca,Pb)2SiO4, (Ca,Pb)3SiO5, (Ca,Pb)SiO3 (wollastonite and pseudowollastonite), Pb3(Ca,Pb)2Si3O11 (ganomalite) solutions, SiO2 (quartz, tridymite, cristobalite), Ca3Si2O7 (rankinite), CaO (lime), PbSiO3 (alamosite), Pb2SiO4, Pb11Si3O17, Pb5SiO7 lead silicates, PbO (massicot), Ca2PbO4, Pb8CaSi6O21 (barysilite), PbCa2Si3O9 (margarosanite) and Pb3Ca12Si5O25 compounds. Analysis of available data has shown the lack of data in the two immiscible liquids range over cristobalite, where several new experiments were done to support the model. The modified quasichemical model is used to describe the liquid slag phase. From these model parameters, the optimized ternary phase diagram is back calculated.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.calphad.2020.101807</doi><orcidid>https://orcid.org/0000-0002-9420-9336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0364-5916
ispartof Calphad, 2020-09, Vol.70, p.101807, Article 101807
issn 0364-5916
1873-2984
language eng
recordid cdi_proquest_journals_2447303841
source Elsevier ScienceDirect Journals
subjects Calcium
Calcium oxide
Cristobalite
Lead
Lead silicate
Liquidus
Optimization
Parameters
Phase diagrams
Phase equilibria
Pseudowollastonite
Silica
Silicates
Silicon dioxide
Slags
Ternary systems
Thermodynamic assessment
Thermodynamic equilibrium
Thermodynamic models
Tridymite
Wollastonite
Zinc oxide
title Thermodynamic optimization of the binary PbO–CaO and ternary PbO–CaO–SiO2 systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T15%3A52%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20optimization%20of%20the%20binary%20PbO%E2%80%93CaO%20and%20ternary%20PbO%E2%80%93CaO%E2%80%93SiO2%20systems&rft.jtitle=Calphad&rft.au=Shevchenko,%20M.&rft.date=2020-09&rft.volume=70&rft.spage=101807&rft.pages=101807-&rft.artnum=101807&rft.issn=0364-5916&rft.eissn=1873-2984&rft_id=info:doi/10.1016/j.calphad.2020.101807&rft_dat=%3Cproquest_cross%3E2447303841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447303841&rft_id=info:pmid/&rft_els_id=S0364591620300729&rfr_iscdi=true