Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes

We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided design 2020-10, Vol.127, p.102866, Article 102866
Hauptverfasser: Park, Youngjin, Son, Sang-Hyun, Kim, Myung-Soo, Elber, Gershon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102866
container_title Computer aided design
container_volume 127
creator Park, Youngjin
Son, Sang-Hyun
Kim, Myung-Soo
Elber, Gershon
description We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘. [Display omitted] •A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.
doi_str_mv 10.1016/j.cad.2020.102866
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447302845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448520300592</els_id><sourcerecordid>2447302845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9AHckrqcCwww0rrTxljTWxMuWMHDGMmmHCjOarvQdfEOfRGpdu-In-b9zTj6EjikZUULL02ZktB0xwjZ_JstyBw2oFOOMlbLYRQNCKMk4l8U-OoixIYQwmo8H6OOhD7U28P359Zey27aDEMF0zrd44pervtO_-Sm69gVrfOH71m7is1_0S8A3DoIOZr7G766b41k0_SIRqfDog3dWL_C97swcInYt7uaAp6BrfOctxEO0V-tFhKO_d4ieri4fJzfZdHZ9OzmfZiYvZZdBUVW8hoJWXOYUrLRCMCOEZEQSUlRjXlZE5BU3UFtuBZV56ligRV1xJkQ-RCfbuavgX3uInWp8H9q0UjHORZ6c8SK16LZlgo8xQK1WwS11WCtK1MazalTyrDae1dZzYs62DKTz35IKFY2D1oB1IUlU1rt_6B9qPIep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447302845</pqid></control><display><type>article</type><title>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Park, Youngjin ; Son, Sang-Hyun ; Kim, Myung-Soo ; Elber, Gershon</creator><creatorcontrib>Park, Youngjin ; Son, Sang-Hyun ; Kim, Myung-Soo ; Elber, Gershon</creatorcontrib><description>We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘. [Display omitted] •A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2020.102866</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Bounding volume hierarchy ; Computation ; Intersections ; Nodes ; Osculating toroidal patches ; Patches (structures) ; Rectangle-swept sphere (RSS) ; Surface geometry ; Surface–surface-intersection</subject><ispartof>Computer aided design, 2020-10, Vol.127, p.102866, Article 102866</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</citedby><cites>FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</cites><orcidid>0000-0002-3893-5421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448520300592$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Park, Youngjin</creatorcontrib><creatorcontrib>Son, Sang-Hyun</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><title>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</title><title>Computer aided design</title><description>We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘. [Display omitted] •A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.</description><subject>Algorithms</subject><subject>Bounding volume hierarchy</subject><subject>Computation</subject><subject>Intersections</subject><subject>Nodes</subject><subject>Osculating toroidal patches</subject><subject>Patches (structures)</subject><subject>Rectangle-swept sphere (RSS)</subject><subject>Surface geometry</subject><subject>Surface–surface-intersection</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9AHckrqcCwww0rrTxljTWxMuWMHDGMmmHCjOarvQdfEOfRGpdu-In-b9zTj6EjikZUULL02ZktB0xwjZ_JstyBw2oFOOMlbLYRQNCKMk4l8U-OoixIYQwmo8H6OOhD7U28P359Zey27aDEMF0zrd44pervtO_-Sm69gVrfOH71m7is1_0S8A3DoIOZr7G766b41k0_SIRqfDog3dWL_C97swcInYt7uaAp6BrfOctxEO0V-tFhKO_d4ieri4fJzfZdHZ9OzmfZiYvZZdBUVW8hoJWXOYUrLRCMCOEZEQSUlRjXlZE5BU3UFtuBZV56ligRV1xJkQ-RCfbuavgX3uInWp8H9q0UjHORZ6c8SK16LZlgo8xQK1WwS11WCtK1MazalTyrDae1dZzYs62DKTz35IKFY2D1oB1IUlU1rt_6B9qPIep</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Park, Youngjin</creator><creator>Son, Sang-Hyun</creator><creator>Kim, Myung-Soo</creator><creator>Elber, Gershon</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3893-5421</orcidid></search><sort><creationdate>202010</creationdate><title>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</title><author>Park, Youngjin ; Son, Sang-Hyun ; Kim, Myung-Soo ; Elber, Gershon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bounding volume hierarchy</topic><topic>Computation</topic><topic>Intersections</topic><topic>Nodes</topic><topic>Osculating toroidal patches</topic><topic>Patches (structures)</topic><topic>Rectangle-swept sphere (RSS)</topic><topic>Surface geometry</topic><topic>Surface–surface-intersection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Youngjin</creatorcontrib><creatorcontrib>Son, Sang-Hyun</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Youngjin</au><au>Son, Sang-Hyun</au><au>Kim, Myung-Soo</au><au>Elber, Gershon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</atitle><jtitle>Computer aided design</jtitle><date>2020-10</date><risdate>2020</risdate><volume>127</volume><spage>102866</spage><pages>102866-</pages><artnum>102866</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘. [Display omitted] •A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2020.102866</doi><orcidid>https://orcid.org/0000-0002-3893-5421</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-4485
ispartof Computer aided design, 2020-10, Vol.127, p.102866, Article 102866
issn 0010-4485
1879-2685
language eng
recordid cdi_proquest_journals_2447302845
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Bounding volume hierarchy
Computation
Intersections
Nodes
Osculating toroidal patches
Patches (structures)
Rectangle-swept sphere (RSS)
Surface geometry
Surface–surface-intersection
title Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%E2%80%93Surface-Intersection%20Computation%20Using%20a%20Bounding%20Volume%20Hierarchy%20with%20Osculating%20Toroidal%20Patches%20in%20the%20Leaf%20Nodes&rft.jtitle=Computer%20aided%20design&rft.au=Park,%20Youngjin&rft.date=2020-10&rft.volume=127&rft.spage=102866&rft.pages=102866-&rft.artnum=102866&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2020.102866&rft_dat=%3Cproquest_cross%3E2447302845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447302845&rft_id=info:pmid/&rft_els_id=S0010448520300592&rfr_iscdi=true