Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes
We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies...
Gespeichert in:
Veröffentlicht in: | Computer aided design 2020-10, Vol.127, p.102866, Article 102866 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102866 |
container_title | Computer aided design |
container_volume | 127 |
creator | Park, Youngjin Son, Sang-Hyun Kim, Myung-Soo Elber, Gershon |
description | We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘.
[Display omitted]
•A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces. |
doi_str_mv | 10.1016/j.cad.2020.102866 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447302845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010448520300592</els_id><sourcerecordid>2447302845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</originalsourceid><addsrcrecordid>eNp9kMtOAyEUhonRxFp9AHckrqcCwww0rrTxljTWxMuWMHDGMmmHCjOarvQdfEOfRGpdu-In-b9zTj6EjikZUULL02ZktB0xwjZ_JstyBw2oFOOMlbLYRQNCKMk4l8U-OoixIYQwmo8H6OOhD7U28P359Zey27aDEMF0zrd44pervtO_-Sm69gVrfOH71m7is1_0S8A3DoIOZr7G766b41k0_SIRqfDog3dWL_C97swcInYt7uaAp6BrfOctxEO0V-tFhKO_d4ieri4fJzfZdHZ9OzmfZiYvZZdBUVW8hoJWXOYUrLRCMCOEZEQSUlRjXlZE5BU3UFtuBZV56ligRV1xJkQ-RCfbuavgX3uInWp8H9q0UjHORZ6c8SK16LZlgo8xQK1WwS11WCtK1MazalTyrDae1dZzYs62DKTz35IKFY2D1oB1IUlU1rt_6B9qPIep</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447302845</pqid></control><display><type>article</type><title>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Park, Youngjin ; Son, Sang-Hyun ; Kim, Myung-Soo ; Elber, Gershon</creator><creatorcontrib>Park, Youngjin ; Son, Sang-Hyun ; Kim, Myung-Soo ; Elber, Gershon</creatorcontrib><description>We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘.
[Display omitted]
•A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.</description><identifier>ISSN: 0010-4485</identifier><identifier>EISSN: 1879-2685</identifier><identifier>DOI: 10.1016/j.cad.2020.102866</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Bounding volume hierarchy ; Computation ; Intersections ; Nodes ; Osculating toroidal patches ; Patches (structures) ; Rectangle-swept sphere (RSS) ; Surface geometry ; Surface–surface-intersection</subject><ispartof>Computer aided design, 2020-10, Vol.127, p.102866, Article 102866</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</citedby><cites>FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</cites><orcidid>0000-0002-3893-5421</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010448520300592$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Park, Youngjin</creatorcontrib><creatorcontrib>Son, Sang-Hyun</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><title>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</title><title>Computer aided design</title><description>We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘.
[Display omitted]
•A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.</description><subject>Algorithms</subject><subject>Bounding volume hierarchy</subject><subject>Computation</subject><subject>Intersections</subject><subject>Nodes</subject><subject>Osculating toroidal patches</subject><subject>Patches (structures)</subject><subject>Rectangle-swept sphere (RSS)</subject><subject>Surface geometry</subject><subject>Surface–surface-intersection</subject><issn>0010-4485</issn><issn>1879-2685</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAyEUhonRxFp9AHckrqcCwww0rrTxljTWxMuWMHDGMmmHCjOarvQdfEOfRGpdu-In-b9zTj6EjikZUULL02ZktB0xwjZ_JstyBw2oFOOMlbLYRQNCKMk4l8U-OoixIYQwmo8H6OOhD7U28P359Zey27aDEMF0zrd44pervtO_-Sm69gVrfOH71m7is1_0S8A3DoIOZr7G766b41k0_SIRqfDog3dWL_C97swcInYt7uaAp6BrfOctxEO0V-tFhKO_d4ieri4fJzfZdHZ9OzmfZiYvZZdBUVW8hoJWXOYUrLRCMCOEZEQSUlRjXlZE5BU3UFtuBZV56ligRV1xJkQ-RCfbuavgX3uInWp8H9q0UjHORZ6c8SK16LZlgo8xQK1WwS11WCtK1MazalTyrDae1dZzYs62DKTz35IKFY2D1oB1IUlU1rt_6B9qPIep</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Park, Youngjin</creator><creator>Son, Sang-Hyun</creator><creator>Kim, Myung-Soo</creator><creator>Elber, Gershon</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3893-5421</orcidid></search><sort><creationdate>202010</creationdate><title>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</title><author>Park, Youngjin ; Son, Sang-Hyun ; Kim, Myung-Soo ; Elber, Gershon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e5bb4fe51b4831ed8d772c778208005b946b073b4cefd4d7183d8dde15fb42773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bounding volume hierarchy</topic><topic>Computation</topic><topic>Intersections</topic><topic>Nodes</topic><topic>Osculating toroidal patches</topic><topic>Patches (structures)</topic><topic>Rectangle-swept sphere (RSS)</topic><topic>Surface geometry</topic><topic>Surface–surface-intersection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Youngjin</creatorcontrib><creatorcontrib>Son, Sang-Hyun</creatorcontrib><creatorcontrib>Kim, Myung-Soo</creatorcontrib><creatorcontrib>Elber, Gershon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer aided design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Youngjin</au><au>Son, Sang-Hyun</au><au>Kim, Myung-Soo</au><au>Elber, Gershon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes</atitle><jtitle>Computer aided design</jtitle><date>2020-10</date><risdate>2020</risdate><volume>127</volume><spage>102866</spage><pages>102866-</pages><artnum>102866</artnum><issn>0010-4485</issn><eissn>1879-2685</eissn><abstract>We present an efficient and robust algorithm for computing the intersection curve of two freeform surfaces using a Bounding Volume Hierarchy (BVH), where the leaf nodes contain osculating toroidal patches. The covering of each surface by a union of tightly fitting toroidal patches greatly simplifies the geometric operations involved in the surface–surface-intersection computation, i.e., the bounding of surface normals, the detection of surface binormals, the point projection from one surface to the other surface, and the intersection of local surface patches. Moreover, the hierarchy of simple bounding volumes (such as rectangle-swept spheres) accelerates the geometric search for the potential pairs of surface patches that may generate some curve segments in the surface–surface-intersection. We demonstrate the effectiveness of our approach by using test examples of intersecting two freeform surfaces, including some highly non-trivial examples with tangential intersections. In particular, we test the intersection of two almost identical surfaces, where one surface is obtained from the same surface, using a rotation around a normal line by a smaller and smaller angle θ=10−k degree, k=0,…,5. The intersection results are often given as surface subpatches in some highly tangential areas, and even as the whole surface itself, when θ=0.00001∘.
[Display omitted]
•A new BVH-based algorithm for computing the SSI curves for freeform surfaces•Highly efficient and robust in handling the degenerate case of tangential intersections.•Improvement based on the high approximation order and simplicity of osculating torus.•Compact data structures for bounding the positions and normals of freeform surfaces.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cad.2020.102866</doi><orcidid>https://orcid.org/0000-0002-3893-5421</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4485 |
ispartof | Computer aided design, 2020-10, Vol.127, p.102866, Article 102866 |
issn | 0010-4485 1879-2685 |
language | eng |
recordid | cdi_proquest_journals_2447302845 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Bounding volume hierarchy Computation Intersections Nodes Osculating toroidal patches Patches (structures) Rectangle-swept sphere (RSS) Surface geometry Surface–surface-intersection |
title | Surface–Surface-Intersection Computation Using a Bounding Volume Hierarchy with Osculating Toroidal Patches in the Leaf Nodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A08%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%E2%80%93Surface-Intersection%20Computation%20Using%20a%20Bounding%20Volume%20Hierarchy%20with%20Osculating%20Toroidal%20Patches%20in%20the%20Leaf%20Nodes&rft.jtitle=Computer%20aided%20design&rft.au=Park,%20Youngjin&rft.date=2020-10&rft.volume=127&rft.spage=102866&rft.pages=102866-&rft.artnum=102866&rft.issn=0010-4485&rft.eissn=1879-2685&rft_id=info:doi/10.1016/j.cad.2020.102866&rft_dat=%3Cproquest_cross%3E2447302845%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447302845&rft_id=info:pmid/&rft_els_id=S0010448520300592&rfr_iscdi=true |