Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation

Zeckendorf's Theorem states that every positive integer can be uniquely represented as a sum of non-adjacent Fibonacci numbers, indexed from \(1, 2, 3, 5,\ldots\). This has been generalized by many authors, in particular to constant coefficient fixed depth linear recurrences with positive (or i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-09
Hauptverfasser: Bołdyriew, Elżbieta, Cusenza, Anna, Dai, Linglong, Ding, Pei, Dunkelberg, Aidan, Haviland, John, Huffman, Kate, Ke, Dianhui, Kleber, Daniel, Kuretski, Jason, Lentfer, John, Luo, Tianhao, Miller, Steven J, Mizgerd, Clayton, Tiwari, Vashisth, Ye, Jingkai, Zhang, Yunhao, Zheng, Xiaoyan, Zhu, Weiduo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bołdyriew, Elżbieta
Cusenza, Anna
Dai, Linglong
Ding, Pei
Dunkelberg, Aidan
Haviland, John
Huffman, Kate
Ke, Dianhui
Kleber, Daniel
Kuretski, Jason
Lentfer, John
Luo, Tianhao
Miller, Steven J
Mizgerd, Clayton
Tiwari, Vashisth
Ye, Jingkai
Zhang, Yunhao
Zheng, Xiaoyan
Zhu, Weiduo
description Zeckendorf's Theorem states that every positive integer can be uniquely represented as a sum of non-adjacent Fibonacci numbers, indexed from \(1, 2, 3, 5,\ldots\). This has been generalized by many authors, in particular to constant coefficient fixed depth linear recurrences with positive (or in some cases non-negative) coefficients. In this work we extend this result to a recurrence with non-constant coefficients, \(a_{n+1} = n a_{n} + a_{n-1}\). The decomposition law becomes every \(m\) has a unique decomposition as \(\sum s_i a_i\) with \(s_i \le i\), where if \(s_i = i\) then \(s_{i-1} = 0\). Similar to Zeckendorf's original proof, we use the greedy algorithm. We show that almost all the gaps between summands, as \(n\) approaches infinity, are of length zero, and give a heuristic that the distribution of the number of summands tends to a Gaussian. Furthermore, we build a game based upon this recurrence relation, generalizing a game on the Fibonacci numbers. Given a fixed integer \(n\) and an initial decomposition of \(n= na_1\), the players alternate by using moves related to the recurrence relation, and whoever moves last wins. We show that the game is finite and ends at the unique decomposition of \(n\), and that either player can win in a two-player game. We find the strategy to attain the shortest game possible, and the length of this shortest game. Then we show that in this generalized game when there are more than three players, no player has the winning strategy. Lastly, we demonstrate how one player in the two-player game can force the game to progress to their advantage.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2447128979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447128979</sourcerecordid><originalsourceid>FETCH-proquest_journals_24471289793</originalsourceid><addsrcrecordid>eNqNi7EKwkAQRA9BMGj-YcHCKpDcJcbUErWyCFY24Ug2GjW7encBCz_eFBY2gtUM8-aNhCeVioJVLOVE-NZewjCUy1QmifLEK386pLqlExyxug6VTbOwcDgjG-zAMWjYMwUVk3WaHBRY9cYgVQiaanBn_DJhqzsEpmFu7U-vwJt2LdNMjBt9s-h_cirmm_yw3gV3w48erSsv3BsaUCnjOI3kKksz9d_rDZhdTxo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447128979</pqid></control><display><type>article</type><title>Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation</title><source>Free E- Journals</source><creator>Bołdyriew, Elżbieta ; Cusenza, Anna ; Dai, Linglong ; Ding, Pei ; Dunkelberg, Aidan ; Haviland, John ; Huffman, Kate ; Ke, Dianhui ; Kleber, Daniel ; Kuretski, Jason ; Lentfer, John ; Luo, Tianhao ; Miller, Steven J ; Mizgerd, Clayton ; Tiwari, Vashisth ; Ye, Jingkai ; Zhang, Yunhao ; Zheng, Xiaoyan ; Zhu, Weiduo</creator><creatorcontrib>Bołdyriew, Elżbieta ; Cusenza, Anna ; Dai, Linglong ; Ding, Pei ; Dunkelberg, Aidan ; Haviland, John ; Huffman, Kate ; Ke, Dianhui ; Kleber, Daniel ; Kuretski, Jason ; Lentfer, John ; Luo, Tianhao ; Miller, Steven J ; Mizgerd, Clayton ; Tiwari, Vashisth ; Ye, Jingkai ; Zhang, Yunhao ; Zheng, Xiaoyan ; Zhu, Weiduo</creatorcontrib><description>Zeckendorf's Theorem states that every positive integer can be uniquely represented as a sum of non-adjacent Fibonacci numbers, indexed from \(1, 2, 3, 5,\ldots\). This has been generalized by many authors, in particular to constant coefficient fixed depth linear recurrences with positive (or in some cases non-negative) coefficients. In this work we extend this result to a recurrence with non-constant coefficients, \(a_{n+1} = n a_{n} + a_{n-1}\). The decomposition law becomes every \(m\) has a unique decomposition as \(\sum s_i a_i\) with \(s_i \le i\), where if \(s_i = i\) then \(s_{i-1} = 0\). Similar to Zeckendorf's original proof, we use the greedy algorithm. We show that almost all the gaps between summands, as \(n\) approaches infinity, are of length zero, and give a heuristic that the distribution of the number of summands tends to a Gaussian. Furthermore, we build a game based upon this recurrence relation, generalizing a game on the Fibonacci numbers. Given a fixed integer \(n\) and an initial decomposition of \(n= na_1\), the players alternate by using moves related to the recurrence relation, and whoever moves last wins. We show that the game is finite and ends at the unique decomposition of \(n\), and that either player can win in a two-player game. We find the strategy to attain the shortest game possible, and the length of this shortest game. Then we show that in this generalized game when there are more than three players, no player has the winning strategy. Lastly, we demonstrate how one player in the two-player game can force the game to progress to their advantage.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coefficients ; Decomposition ; Fibonacci numbers ; Game theory ; Games ; Greedy algorithms ; Integers ; Theorems</subject><ispartof>arXiv.org, 2020-09</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Bołdyriew, Elżbieta</creatorcontrib><creatorcontrib>Cusenza, Anna</creatorcontrib><creatorcontrib>Dai, Linglong</creatorcontrib><creatorcontrib>Ding, Pei</creatorcontrib><creatorcontrib>Dunkelberg, Aidan</creatorcontrib><creatorcontrib>Haviland, John</creatorcontrib><creatorcontrib>Huffman, Kate</creatorcontrib><creatorcontrib>Ke, Dianhui</creatorcontrib><creatorcontrib>Kleber, Daniel</creatorcontrib><creatorcontrib>Kuretski, Jason</creatorcontrib><creatorcontrib>Lentfer, John</creatorcontrib><creatorcontrib>Luo, Tianhao</creatorcontrib><creatorcontrib>Miller, Steven J</creatorcontrib><creatorcontrib>Mizgerd, Clayton</creatorcontrib><creatorcontrib>Tiwari, Vashisth</creatorcontrib><creatorcontrib>Ye, Jingkai</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Zheng, Xiaoyan</creatorcontrib><creatorcontrib>Zhu, Weiduo</creatorcontrib><title>Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation</title><title>arXiv.org</title><description>Zeckendorf's Theorem states that every positive integer can be uniquely represented as a sum of non-adjacent Fibonacci numbers, indexed from \(1, 2, 3, 5,\ldots\). This has been generalized by many authors, in particular to constant coefficient fixed depth linear recurrences with positive (or in some cases non-negative) coefficients. In this work we extend this result to a recurrence with non-constant coefficients, \(a_{n+1} = n a_{n} + a_{n-1}\). The decomposition law becomes every \(m\) has a unique decomposition as \(\sum s_i a_i\) with \(s_i \le i\), where if \(s_i = i\) then \(s_{i-1} = 0\). Similar to Zeckendorf's original proof, we use the greedy algorithm. We show that almost all the gaps between summands, as \(n\) approaches infinity, are of length zero, and give a heuristic that the distribution of the number of summands tends to a Gaussian. Furthermore, we build a game based upon this recurrence relation, generalizing a game on the Fibonacci numbers. Given a fixed integer \(n\) and an initial decomposition of \(n= na_1\), the players alternate by using moves related to the recurrence relation, and whoever moves last wins. We show that the game is finite and ends at the unique decomposition of \(n\), and that either player can win in a two-player game. We find the strategy to attain the shortest game possible, and the length of this shortest game. Then we show that in this generalized game when there are more than three players, no player has the winning strategy. Lastly, we demonstrate how one player in the two-player game can force the game to progress to their advantage.</description><subject>Coefficients</subject><subject>Decomposition</subject><subject>Fibonacci numbers</subject><subject>Game theory</subject><subject>Games</subject><subject>Greedy algorithms</subject><subject>Integers</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi7EKwkAQRA9BMGj-YcHCKpDcJcbUErWyCFY24Ug2GjW7encBCz_eFBY2gtUM8-aNhCeVioJVLOVE-NZewjCUy1QmifLEK386pLqlExyxug6VTbOwcDgjG-zAMWjYMwUVk3WaHBRY9cYgVQiaanBn_DJhqzsEpmFu7U-vwJt2LdNMjBt9s-h_cirmm_yw3gV3w48erSsv3BsaUCnjOI3kKksz9d_rDZhdTxo</recordid><startdate>20200926</startdate><enddate>20200926</enddate><creator>Bołdyriew, Elżbieta</creator><creator>Cusenza, Anna</creator><creator>Dai, Linglong</creator><creator>Ding, Pei</creator><creator>Dunkelberg, Aidan</creator><creator>Haviland, John</creator><creator>Huffman, Kate</creator><creator>Ke, Dianhui</creator><creator>Kleber, Daniel</creator><creator>Kuretski, Jason</creator><creator>Lentfer, John</creator><creator>Luo, Tianhao</creator><creator>Miller, Steven J</creator><creator>Mizgerd, Clayton</creator><creator>Tiwari, Vashisth</creator><creator>Ye, Jingkai</creator><creator>Zhang, Yunhao</creator><creator>Zheng, Xiaoyan</creator><creator>Zhu, Weiduo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200926</creationdate><title>Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation</title><author>Bołdyriew, Elżbieta ; Cusenza, Anna ; Dai, Linglong ; Ding, Pei ; Dunkelberg, Aidan ; Haviland, John ; Huffman, Kate ; Ke, Dianhui ; Kleber, Daniel ; Kuretski, Jason ; Lentfer, John ; Luo, Tianhao ; Miller, Steven J ; Mizgerd, Clayton ; Tiwari, Vashisth ; Ye, Jingkai ; Zhang, Yunhao ; Zheng, Xiaoyan ; Zhu, Weiduo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24471289793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coefficients</topic><topic>Decomposition</topic><topic>Fibonacci numbers</topic><topic>Game theory</topic><topic>Games</topic><topic>Greedy algorithms</topic><topic>Integers</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bołdyriew, Elżbieta</creatorcontrib><creatorcontrib>Cusenza, Anna</creatorcontrib><creatorcontrib>Dai, Linglong</creatorcontrib><creatorcontrib>Ding, Pei</creatorcontrib><creatorcontrib>Dunkelberg, Aidan</creatorcontrib><creatorcontrib>Haviland, John</creatorcontrib><creatorcontrib>Huffman, Kate</creatorcontrib><creatorcontrib>Ke, Dianhui</creatorcontrib><creatorcontrib>Kleber, Daniel</creatorcontrib><creatorcontrib>Kuretski, Jason</creatorcontrib><creatorcontrib>Lentfer, John</creatorcontrib><creatorcontrib>Luo, Tianhao</creatorcontrib><creatorcontrib>Miller, Steven J</creatorcontrib><creatorcontrib>Mizgerd, Clayton</creatorcontrib><creatorcontrib>Tiwari, Vashisth</creatorcontrib><creatorcontrib>Ye, Jingkai</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Zheng, Xiaoyan</creatorcontrib><creatorcontrib>Zhu, Weiduo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bołdyriew, Elżbieta</au><au>Cusenza, Anna</au><au>Dai, Linglong</au><au>Ding, Pei</au><au>Dunkelberg, Aidan</au><au>Haviland, John</au><au>Huffman, Kate</au><au>Ke, Dianhui</au><au>Kleber, Daniel</au><au>Kuretski, Jason</au><au>Lentfer, John</au><au>Luo, Tianhao</au><au>Miller, Steven J</au><au>Mizgerd, Clayton</au><au>Tiwari, Vashisth</au><au>Ye, Jingkai</au><au>Zhang, Yunhao</au><au>Zheng, Xiaoyan</au><au>Zhu, Weiduo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation</atitle><jtitle>arXiv.org</jtitle><date>2020-09-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Zeckendorf's Theorem states that every positive integer can be uniquely represented as a sum of non-adjacent Fibonacci numbers, indexed from \(1, 2, 3, 5,\ldots\). This has been generalized by many authors, in particular to constant coefficient fixed depth linear recurrences with positive (or in some cases non-negative) coefficients. In this work we extend this result to a recurrence with non-constant coefficients, \(a_{n+1} = n a_{n} + a_{n-1}\). The decomposition law becomes every \(m\) has a unique decomposition as \(\sum s_i a_i\) with \(s_i \le i\), where if \(s_i = i\) then \(s_{i-1} = 0\). Similar to Zeckendorf's original proof, we use the greedy algorithm. We show that almost all the gaps between summands, as \(n\) approaches infinity, are of length zero, and give a heuristic that the distribution of the number of summands tends to a Gaussian. Furthermore, we build a game based upon this recurrence relation, generalizing a game on the Fibonacci numbers. Given a fixed integer \(n\) and an initial decomposition of \(n= na_1\), the players alternate by using moves related to the recurrence relation, and whoever moves last wins. We show that the game is finite and ends at the unique decomposition of \(n\), and that either player can win in a two-player game. We find the strategy to attain the shortest game possible, and the length of this shortest game. Then we show that in this generalized game when there are more than three players, no player has the winning strategy. Lastly, we demonstrate how one player in the two-player game can force the game to progress to their advantage.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2447128979
source Free E- Journals
subjects Coefficients
Decomposition
Fibonacci numbers
Game theory
Games
Greedy algorithms
Integers
Theorems
title Extending Zeckendorf's Theorem to a Non-constant Recurrence and the Zeckendorf Game on this Non-constant Recurrence Relation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Extending%20Zeckendorf's%20Theorem%20to%20a%20Non-constant%20Recurrence%20and%20the%20Zeckendorf%20Game%20on%20this%20Non-constant%20Recurrence%20Relation&rft.jtitle=arXiv.org&rft.au=Bo%C5%82dyriew,%20El%C5%BCbieta&rft.date=2020-09-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2447128979%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447128979&rft_id=info:pmid/&rfr_iscdi=true