Delayed Photons from Binary Evolution Help Reionize the Universe

High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is 70%....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-09, Vol.901 (1), p.72
Hauptverfasser: Secunda, Amy, Cen, Renyue, Kimm, Taysun, Götberg, Ylva, de Mink, Selma E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 72
container_title The Astrophysical journal
container_volume 901
creator Secunda, Amy
Cen, Renyue
Kimm, Taysun
Götberg, Ylva
de Mink, Selma E.
description High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is 70%. Moreover, simulations so far have yielded values of fesc falling only on the lower end of the ∼10%-20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study how fesc changes when we include two different products of binary stellar evolution-stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10-200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) and fesc are often out of phase by this 10-200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction ( ) by ∼13% and ∼10%, respectively, resulting in . Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.
doi_str_mv 10.3847/1538-4357/abaefa
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2447020450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447020450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-e67af0afdd43dd0aa7cc48fba821021df189c53af5db1c5225bbc1a5bedeede03</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFbvHhf0aOx-NslNrdUKBUUseFs22VmakmbjblKov96EiF5EGJgPnnmHeRE6p-SaJyKeUMmTSHAZT3SmweoDNPoZHaIRIUREUx6_H6OTEDZ9y9J0hG7uodR7MPhl7RpXBWy92-K7otJ-j-c7V7ZN4Sq8gLLGr9CVxSfgZg14VRU78AFO0ZHVZYCz7zxGq4f522wRLZ8fn2a3yygXQjYRTGNtibbGCG4M0TrOc5HYTCeMEkaNpUmaS66tNBnNJWMyy3KqZQYGuiB8jC4G3dq7jxZCozau9VV3UjEhYsKIkD1FBir3LgQPVtW-2Ha_KEpU75PqTVG9KWrwqVu5GlYKV_9q_oNf_oHreqNSQhVVMVO1sfwLfc14hQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447020450</pqid></control><display><type>article</type><title>Delayed Photons from Binary Evolution Help Reionize the Universe</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Secunda, Amy ; Cen, Renyue ; Kimm, Taysun ; Götberg, Ylva ; de Mink, Selma E.</creator><creatorcontrib>Secunda, Amy ; Cen, Renyue ; Kimm, Taysun ; Götberg, Ylva ; de Mink, Selma E.</creatorcontrib><description>High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is 70%. Moreover, simulations so far have yielded values of fesc falling only on the lower end of the ∼10%-20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study how fesc changes when we include two different products of binary stellar evolution-stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10-200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) and fesc are often out of phase by this 10-200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction ( ) by ∼13% and ∼10%, respectively, resulting in . Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/abaefa</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astrophysics ; Binary stars ; Computer simulation ; Continuum radiation ; Early universe ; Galaxies ; High resolution ; Hydrogen ; Ionization ; James Webb Space Telescope ; Massive stars ; Numerical simulations ; Photons ; Radiation ; Red shift ; Reionization ; Space telescopes ; Star &amp; galaxy formation ; Star formation ; Stars &amp; galaxies ; Stellar evolution ; Stellar models ; Stellar radiation ; Synthesis ; Universe</subject><ispartof>The Astrophysical journal, 2020-09, Vol.901 (1), p.72</ispartof><rights>2020. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Sep 01, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-e67af0afdd43dd0aa7cc48fba821021df189c53af5db1c5225bbc1a5bedeede03</citedby><cites>FETCH-LOGICAL-c445t-e67af0afdd43dd0aa7cc48fba821021df189c53af5db1c5225bbc1a5bedeede03</cites><orcidid>0000-0001-9336-2825 ; 0000-0002-1174-2873 ; 0000-0001-8531-9536 ; 0000-0002-3950-3997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/abaefa/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Secunda, Amy</creatorcontrib><creatorcontrib>Cen, Renyue</creatorcontrib><creatorcontrib>Kimm, Taysun</creatorcontrib><creatorcontrib>Götberg, Ylva</creatorcontrib><creatorcontrib>de Mink, Selma E.</creatorcontrib><title>Delayed Photons from Binary Evolution Help Reionize the Universe</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is 70%. Moreover, simulations so far have yielded values of fesc falling only on the lower end of the ∼10%-20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study how fesc changes when we include two different products of binary stellar evolution-stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10-200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) and fesc are often out of phase by this 10-200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction ( ) by ∼13% and ∼10%, respectively, resulting in . Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.</description><subject>Astronomical models</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Computer simulation</subject><subject>Continuum radiation</subject><subject>Early universe</subject><subject>Galaxies</subject><subject>High resolution</subject><subject>Hydrogen</subject><subject>Ionization</subject><subject>James Webb Space Telescope</subject><subject>Massive stars</subject><subject>Numerical simulations</subject><subject>Photons</subject><subject>Radiation</subject><subject>Red shift</subject><subject>Reionization</subject><subject>Space telescopes</subject><subject>Star &amp; galaxy formation</subject><subject>Star formation</subject><subject>Stars &amp; galaxies</subject><subject>Stellar evolution</subject><subject>Stellar models</subject><subject>Stellar radiation</subject><subject>Synthesis</subject><subject>Universe</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kE1Lw0AQhhdRsFbvHhf0aOx-NslNrdUKBUUseFs22VmakmbjblKov96EiF5EGJgPnnmHeRE6p-SaJyKeUMmTSHAZT3SmweoDNPoZHaIRIUREUx6_H6OTEDZ9y9J0hG7uodR7MPhl7RpXBWy92-K7otJ-j-c7V7ZN4Sq8gLLGr9CVxSfgZg14VRU78AFO0ZHVZYCz7zxGq4f522wRLZ8fn2a3yygXQjYRTGNtibbGCG4M0TrOc5HYTCeMEkaNpUmaS66tNBnNJWMyy3KqZQYGuiB8jC4G3dq7jxZCozau9VV3UjEhYsKIkD1FBir3LgQPVtW-2Ha_KEpU75PqTVG9KWrwqVu5GlYKV_9q_oNf_oHreqNSQhVVMVO1sfwLfc14hQ</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Secunda, Amy</creator><creator>Cen, Renyue</creator><creator>Kimm, Taysun</creator><creator>Götberg, Ylva</creator><creator>de Mink, Selma E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9336-2825</orcidid><orcidid>https://orcid.org/0000-0002-1174-2873</orcidid><orcidid>https://orcid.org/0000-0001-8531-9536</orcidid><orcidid>https://orcid.org/0000-0002-3950-3997</orcidid></search><sort><creationdate>20200901</creationdate><title>Delayed Photons from Binary Evolution Help Reionize the Universe</title><author>Secunda, Amy ; Cen, Renyue ; Kimm, Taysun ; Götberg, Ylva ; de Mink, Selma E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-e67af0afdd43dd0aa7cc48fba821021df189c53af5db1c5225bbc1a5bedeede03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Computer simulation</topic><topic>Continuum radiation</topic><topic>Early universe</topic><topic>Galaxies</topic><topic>High resolution</topic><topic>Hydrogen</topic><topic>Ionization</topic><topic>James Webb Space Telescope</topic><topic>Massive stars</topic><topic>Numerical simulations</topic><topic>Photons</topic><topic>Radiation</topic><topic>Red shift</topic><topic>Reionization</topic><topic>Space telescopes</topic><topic>Star &amp; galaxy formation</topic><topic>Star formation</topic><topic>Stars &amp; galaxies</topic><topic>Stellar evolution</topic><topic>Stellar models</topic><topic>Stellar radiation</topic><topic>Synthesis</topic><topic>Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Secunda, Amy</creatorcontrib><creatorcontrib>Cen, Renyue</creatorcontrib><creatorcontrib>Kimm, Taysun</creatorcontrib><creatorcontrib>Götberg, Ylva</creatorcontrib><creatorcontrib>de Mink, Selma E.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Secunda, Amy</au><au>Cen, Renyue</au><au>Kimm, Taysun</au><au>Götberg, Ylva</au><au>de Mink, Selma E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delayed Photons from Binary Evolution Help Reionize the Universe</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>901</volume><issue>1</issue><spage>72</spage><pages>72-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>High-resolution numerical simulations including feedback and aimed at calculating the escape fraction (fesc) of hydrogen-ionizing photons often assume stellar radiation based on single-stellar population synthesis models. However, strong evidence suggests the binary fraction of massive stars is 70%. Moreover, simulations so far have yielded values of fesc falling only on the lower end of the ∼10%-20% range, the amount presumed necessary to reionize the universe. Analyzing a high-resolution (4 pc) cosmological radiation-hydrodynamic simulation, we study how fesc changes when we include two different products of binary stellar evolution-stars stripped of their hydrogen envelopes and massive blue stragglers. Both produce significant amounts of ionizing photons 10-200 Myr after each starburst. We find the relative importance of these photons to be amplified with respect to escaped ionizing photons, because peaks in star formation rates (SFRs) and fesc are often out of phase by this 10-200 Myr. Additionally, low-mass, bursty galaxies emit Lyman continuum radiation primarily from binary products when SFRs are low. Observations of these galaxies by the James Webb Space Telescope could provide crucial information on the evolution of binary stars as a function of redshift. Overall, including stripped stars and massive blue stragglers increases our photon-weighted mean escape fraction ( ) by ∼13% and ∼10%, respectively, resulting in . Our results emphasize that using updated stellar population synthesis models with binary stellar evolution provides a more sound physical basis for stellar reionization.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/abaefa</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9336-2825</orcidid><orcidid>https://orcid.org/0000-0002-1174-2873</orcidid><orcidid>https://orcid.org/0000-0001-8531-9536</orcidid><orcidid>https://orcid.org/0000-0002-3950-3997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2020-09, Vol.901 (1), p.72
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2447020450
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Astronomical models
Astrophysics
Binary stars
Computer simulation
Continuum radiation
Early universe
Galaxies
High resolution
Hydrogen
Ionization
James Webb Space Telescope
Massive stars
Numerical simulations
Photons
Radiation
Red shift
Reionization
Space telescopes
Star & galaxy formation
Star formation
Stars & galaxies
Stellar evolution
Stellar models
Stellar radiation
Synthesis
Universe
title Delayed Photons from Binary Evolution Help Reionize the Universe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delayed%20Photons%20from%20Binary%20Evolution%20Help%20Reionize%20the%20Universe&rft.jtitle=The%20Astrophysical%20journal&rft.au=Secunda,%20Amy&rft.date=2020-09-01&rft.volume=901&rft.issue=1&rft.spage=72&rft.pages=72-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/abaefa&rft_dat=%3Cproquest_iop_j%3E2447020450%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447020450&rft_id=info:pmid/&rfr_iscdi=true