Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation

The galaxy Luminosity Function (LF) is a key observable for galaxy formation, evolution studies and for cosmology. In this work, we propose a novel technique to forward model wide-field broad-band galaxy surveys using the fast image simulator UFig and measure the LF of galaxies in the B-band. We use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cosmology and astroparticle physics 2020-09, Vol.2020 (9), p.48-48
Hauptverfasser: Tortorelli, Luca, Fagioli, Martina, Herbel, Jörg, Amara, Adam, Kacprzak, Tomasz, Refregier, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 9
container_start_page 48
container_title Journal of cosmology and astroparticle physics
container_volume 2020
creator Tortorelli, Luca
Fagioli, Martina
Herbel, Jörg
Amara, Adam
Kacprzak, Tomasz
Refregier, Alexandre
description The galaxy Luminosity Function (LF) is a key observable for galaxy formation, evolution studies and for cosmology. In this work, we propose a novel technique to forward model wide-field broad-band galaxy surveys using the fast image simulator UFig and measure the LF of galaxies in the B-band. We use Approximate Bayesian Computation (ABC) to constrain the galaxy population model parameters of the simulations and match data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We define a number of distance metrics between the simulated and the survey data. By exploring the parameter space of the galaxy population model through ABC to find the set of parameters that minimize these distance metrics, we obtain constraints on the LFs of blue and red galaxies as a function of redshift. We find that M* fades by ΔM*0.1−1.0,b=0.68±0.52 and ΔM*0.1−1.0,r=0.54±0.48 magnitudes between redshift z=1 and z=0.1 for blue and red galaxies, respectively. We also find that φ* for blue galaxies stays roughly constant between redshift z=0.1 and z=1, while for red galaxies it decreases of ∼35%. We compare our results to other measurements, finding good agreement at all redshifts, for both blue and red galaxies. To further test our results, we compare the redshift distributions for survey and simulated data. We use the spectroscopic redshift distribution from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and we apply the same selection in colours and magnitudes on our simulations. We find a good agreement between the survey and the simulated redshift distributions. We provide best-fit values and uncertainties for the parameters of the LF. This work offers excellent prospects for measuring other galaxy population properties as a function of redshift using ABC.
doi_str_mv 10.1088/1475-7516/2020/09/048
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2447020288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447020288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-475934ccf7412cc980ef60e850196960f4e6296c7e2dacae938cee964595324e3</originalsourceid><addsrcrecordid>eNpNkFFLwzAQx4MoOKcfQQj4XJukaZo8zuFUmPiiL76EmF1dx5rWJMX125syEZ_uOH539-eH0DUlt5RImVNelVlVUpEzwkhOVE64PEGzv_npv_4cXYSwI4SJopAz9P4MJgweWnARdzWOW8B32YdxG_xp9uYw4vXQNq4LTRzxanA2Np3D303c4kXf--7QtCamFTNCaIzDy67th2gm6hKd1WYf4Oq3ztHb6v51-ZitXx6elot1ZpmkMUvBVMGtrStOmbVKEqgFAVkSqoQSpOYgmBK2ArYx1oAqpAVQgpeqLBiHYo5ujndTnK8BQtS7bvAuvdSM8yopYVImqjxS1ncheKh171N2P2pK9KRRT4r0pEhPGjVROmksfgAb1WWm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447020288</pqid></control><display><type>article</type><title>Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation</title><source>Institute of Physics Journals</source><creator>Tortorelli, Luca ; Fagioli, Martina ; Herbel, Jörg ; Amara, Adam ; Kacprzak, Tomasz ; Refregier, Alexandre</creator><creatorcontrib>Tortorelli, Luca ; Fagioli, Martina ; Herbel, Jörg ; Amara, Adam ; Kacprzak, Tomasz ; Refregier, Alexandre</creatorcontrib><description>The galaxy Luminosity Function (LF) is a key observable for galaxy formation, evolution studies and for cosmology. In this work, we propose a novel technique to forward model wide-field broad-band galaxy surveys using the fast image simulator UFig and measure the LF of galaxies in the B-band. We use Approximate Bayesian Computation (ABC) to constrain the galaxy population model parameters of the simulations and match data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We define a number of distance metrics between the simulated and the survey data. By exploring the parameter space of the galaxy population model through ABC to find the set of parameters that minimize these distance metrics, we obtain constraints on the LFs of blue and red galaxies as a function of redshift. We find that M* fades by ΔM*0.1−1.0,b=0.68±0.52 and ΔM*0.1−1.0,r=0.54±0.48 magnitudes between redshift z=1 and z=0.1 for blue and red galaxies, respectively. We also find that φ* for blue galaxies stays roughly constant between redshift z=0.1 and z=1, while for red galaxies it decreases of ∼35%. We compare our results to other measurements, finding good agreement at all redshifts, for both blue and red galaxies. To further test our results, we compare the redshift distributions for survey and simulated data. We use the spectroscopic redshift distribution from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and we apply the same selection in colours and magnitudes on our simulations. We find a good agreement between the survey and the simulated redshift distributions. We provide best-fit values and uncertainties for the parameters of the LF. This work offers excellent prospects for measuring other galaxy population properties as a function of redshift using ABC.</description><identifier>ISSN: 1475-7516</identifier><identifier>EISSN: 1475-7516</identifier><identifier>DOI: 10.1088/1475-7516/2020/09/048</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Bayesian analysis ; Computation ; Computer simulation ; Cosmology ; Galactic evolution ; Luminosity ; Mathematical models ; Parameter uncertainty ; Polls &amp; surveys ; Red shift ; Star &amp; galaxy formation ; Stars &amp; galaxies</subject><ispartof>Journal of cosmology and astroparticle physics, 2020-09, Vol.2020 (9), p.48-48</ispartof><rights>Copyright IOP Publishing Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-475934ccf7412cc980ef60e850196960f4e6296c7e2dacae938cee964595324e3</citedby><cites>FETCH-LOGICAL-c281t-475934ccf7412cc980ef60e850196960f4e6296c7e2dacae938cee964595324e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Tortorelli, Luca</creatorcontrib><creatorcontrib>Fagioli, Martina</creatorcontrib><creatorcontrib>Herbel, Jörg</creatorcontrib><creatorcontrib>Amara, Adam</creatorcontrib><creatorcontrib>Kacprzak, Tomasz</creatorcontrib><creatorcontrib>Refregier, Alexandre</creatorcontrib><title>Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation</title><title>Journal of cosmology and astroparticle physics</title><description>The galaxy Luminosity Function (LF) is a key observable for galaxy formation, evolution studies and for cosmology. In this work, we propose a novel technique to forward model wide-field broad-band galaxy surveys using the fast image simulator UFig and measure the LF of galaxies in the B-band. We use Approximate Bayesian Computation (ABC) to constrain the galaxy population model parameters of the simulations and match data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We define a number of distance metrics between the simulated and the survey data. By exploring the parameter space of the galaxy population model through ABC to find the set of parameters that minimize these distance metrics, we obtain constraints on the LFs of blue and red galaxies as a function of redshift. We find that M* fades by ΔM*0.1−1.0,b=0.68±0.52 and ΔM*0.1−1.0,r=0.54±0.48 magnitudes between redshift z=1 and z=0.1 for blue and red galaxies, respectively. We also find that φ* for blue galaxies stays roughly constant between redshift z=0.1 and z=1, while for red galaxies it decreases of ∼35%. We compare our results to other measurements, finding good agreement at all redshifts, for both blue and red galaxies. To further test our results, we compare the redshift distributions for survey and simulated data. We use the spectroscopic redshift distribution from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and we apply the same selection in colours and magnitudes on our simulations. We find a good agreement between the survey and the simulated redshift distributions. We provide best-fit values and uncertainties for the parameters of the LF. This work offers excellent prospects for measuring other galaxy population properties as a function of redshift using ABC.</description><subject>Accuracy</subject><subject>Bayesian analysis</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Cosmology</subject><subject>Galactic evolution</subject><subject>Luminosity</subject><subject>Mathematical models</subject><subject>Parameter uncertainty</subject><subject>Polls &amp; surveys</subject><subject>Red shift</subject><subject>Star &amp; galaxy formation</subject><subject>Stars &amp; galaxies</subject><issn>1475-7516</issn><issn>1475-7516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkFFLwzAQx4MoOKcfQQj4XJukaZo8zuFUmPiiL76EmF1dx5rWJMX125syEZ_uOH539-eH0DUlt5RImVNelVlVUpEzwkhOVE64PEGzv_npv_4cXYSwI4SJopAz9P4MJgweWnARdzWOW8B32YdxG_xp9uYw4vXQNq4LTRzxanA2Np3D303c4kXf--7QtCamFTNCaIzDy67th2gm6hKd1WYf4Oq3ztHb6v51-ZitXx6elot1ZpmkMUvBVMGtrStOmbVKEqgFAVkSqoQSpOYgmBK2ArYx1oAqpAVQgpeqLBiHYo5ujndTnK8BQtS7bvAuvdSM8yopYVImqjxS1ncheKh171N2P2pK9KRRT4r0pEhPGjVROmksfgAb1WWm</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Tortorelli, Luca</creator><creator>Fagioli, Martina</creator><creator>Herbel, Jörg</creator><creator>Amara, Adam</creator><creator>Kacprzak, Tomasz</creator><creator>Refregier, Alexandre</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation</title><author>Tortorelli, Luca ; Fagioli, Martina ; Herbel, Jörg ; Amara, Adam ; Kacprzak, Tomasz ; Refregier, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-475934ccf7412cc980ef60e850196960f4e6296c7e2dacae938cee964595324e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Bayesian analysis</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Cosmology</topic><topic>Galactic evolution</topic><topic>Luminosity</topic><topic>Mathematical models</topic><topic>Parameter uncertainty</topic><topic>Polls &amp; surveys</topic><topic>Red shift</topic><topic>Star &amp; galaxy formation</topic><topic>Stars &amp; galaxies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tortorelli, Luca</creatorcontrib><creatorcontrib>Fagioli, Martina</creatorcontrib><creatorcontrib>Herbel, Jörg</creatorcontrib><creatorcontrib>Amara, Adam</creatorcontrib><creatorcontrib>Kacprzak, Tomasz</creatorcontrib><creatorcontrib>Refregier, Alexandre</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of cosmology and astroparticle physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tortorelli, Luca</au><au>Fagioli, Martina</au><au>Herbel, Jörg</au><au>Amara, Adam</au><au>Kacprzak, Tomasz</au><au>Refregier, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation</atitle><jtitle>Journal of cosmology and astroparticle physics</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>2020</volume><issue>9</issue><spage>48</spage><epage>48</epage><pages>48-48</pages><issn>1475-7516</issn><eissn>1475-7516</eissn><abstract>The galaxy Luminosity Function (LF) is a key observable for galaxy formation, evolution studies and for cosmology. In this work, we propose a novel technique to forward model wide-field broad-band galaxy surveys using the fast image simulator UFig and measure the LF of galaxies in the B-band. We use Approximate Bayesian Computation (ABC) to constrain the galaxy population model parameters of the simulations and match data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). We define a number of distance metrics between the simulated and the survey data. By exploring the parameter space of the galaxy population model through ABC to find the set of parameters that minimize these distance metrics, we obtain constraints on the LFs of blue and red galaxies as a function of redshift. We find that M* fades by ΔM*0.1−1.0,b=0.68±0.52 and ΔM*0.1−1.0,r=0.54±0.48 magnitudes between redshift z=1 and z=0.1 for blue and red galaxies, respectively. We also find that φ* for blue galaxies stays roughly constant between redshift z=0.1 and z=1, while for red galaxies it decreases of ∼35%. We compare our results to other measurements, finding good agreement at all redshifts, for both blue and red galaxies. To further test our results, we compare the redshift distributions for survey and simulated data. We use the spectroscopic redshift distribution from the VIMOS Public Extragalactic Redshift Survey (VIPERS) and we apply the same selection in colours and magnitudes on our simulations. We find a good agreement between the survey and the simulated redshift distributions. We provide best-fit values and uncertainties for the parameters of the LF. This work offers excellent prospects for measuring other galaxy population properties as a function of redshift using ABC.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1475-7516/2020/09/048</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1475-7516
ispartof Journal of cosmology and astroparticle physics, 2020-09, Vol.2020 (9), p.48-48
issn 1475-7516
1475-7516
language eng
recordid cdi_proquest_journals_2447020288
source Institute of Physics Journals
subjects Accuracy
Bayesian analysis
Computation
Computer simulation
Cosmology
Galactic evolution
Luminosity
Mathematical models
Parameter uncertainty
Polls & surveys
Red shift
Star & galaxy formation
Stars & galaxies
title Measurement of the B-band galaxy Luminosity Function with Approximate Bayesian Computation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A54%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20the%20B-band%20galaxy%20Luminosity%20Function%20with%20Approximate%20Bayesian%20Computation&rft.jtitle=Journal%20of%20cosmology%20and%20astroparticle%20physics&rft.au=Tortorelli,%20Luca&rft.date=2020-09-01&rft.volume=2020&rft.issue=9&rft.spage=48&rft.epage=48&rft.pages=48-48&rft.issn=1475-7516&rft.eissn=1475-7516&rft_id=info:doi/10.1088/1475-7516/2020/09/048&rft_dat=%3Cproquest_cross%3E2447020288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447020288&rft_id=info:pmid/&rfr_iscdi=true