A new process for separating biofuel based on the salt + 1-butanol + water system

•A new process for separating biobutanol.•Biobutanol was recovered to the organic phase.•Most of water was attracted to the aqueous phase.•>97% salt-free biobutanol was obtained. Compared with bioethanol, biobutanol with higher energy density and lower vapor pressure is more suitable as a fuel fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2020-10, Vol.278, p.118402, Article 118402
Hauptverfasser: Fu, Chuhan, Li, Zhuoxi, Song, Wenli, Yi, Conghua, Xie, Shaoqu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 118402
container_title Fuel (Guildford)
container_volume 278
creator Fu, Chuhan
Li, Zhuoxi
Song, Wenli
Yi, Conghua
Xie, Shaoqu
description •A new process for separating biobutanol.•Biobutanol was recovered to the organic phase.•Most of water was attracted to the aqueous phase.•>97% salt-free biobutanol was obtained. Compared with bioethanol, biobutanol with higher energy density and lower vapor pressure is more suitable as a fuel for motor engines. However, the typical low acetone-butanol-ethanol (ABE) concentration hinders the competitiveness of biobutanol because of 1-butanol tolerance. In addition, the dehydration of 1-butanol involves the separation of 1-butanol + water heterogeneous azeotrope, which was usually achieved in a two-column distillation + decantation system. A new process based on the determination of the salt + 1-butanol + water system was proposed to separate biobutanol from a 1-butanol + water system. The salting out resulted in the formation of an organic solvent-rich phase and an aqueous phase. All the 1-butanol in the water-rich phase was recovered to the organic phase, and most of the water in the 1-butanol-rich phase was attracted to the aqueous phase by the salting-out effects of the electrolytes, namely potassium carbonate, dipotassium hydrogen phosphate, tripotassium phosphate, and potassium pyrophosphate. This effect produces a top phase containing greater than 97% salt-free 1-butanol. The salting-out effect, the solubility, and the solvation effect of an electrolyte play essential roles in the separation of 1-butanol.
doi_str_mv 10.1016/j.fuel.2020.118402
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446727001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236120313983</els_id><sourcerecordid>2446727001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-3f3a5842c6ec7a8e1b5cedef4ba76524d06b53ae56794d632fea6e57b01bacde3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLEEaX4EdtB4lJVvKRKXOjZsp0NJEqTYjtU_Zt-S78Ml3DmtNrVzOzMIHRNyYwSKu-aWTVAO2OEpQMtcsJO0IQWimeKCn6KJiShMsYlPUcXITSEEFWIfIJWc9zBFm987yAEXPUeB9gYb2LdfWBb90ddbE2AEvcdjp-Ag2njYX972NPMDtF0ffu7bU2ERN6FCOtLdFaZNsDV35yi1dPj--IlW749vy7my8xxVsSMV9yIImdOglOmAGqFgxKq3BolBctLIq3gBoRU93kpOavASBDKEmqNK4FP0c2om_x_DRCibvrBd-mlZnkuFVMpd0KxEeV8H4KHSm98vTZ-pynRx_p0o48x9bE-PdaXSA8jCZL_7xq8Dq6GLvmrPbioy77-j_4DeaJ70w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446727001</pqid></control><display><type>article</type><title>A new process for separating biofuel based on the salt + 1-butanol + water system</title><source>Elsevier ScienceDirect Journals</source><creator>Fu, Chuhan ; Li, Zhuoxi ; Song, Wenli ; Yi, Conghua ; Xie, Shaoqu</creator><creatorcontrib>Fu, Chuhan ; Li, Zhuoxi ; Song, Wenli ; Yi, Conghua ; Xie, Shaoqu</creatorcontrib><description>•A new process for separating biobutanol.•Biobutanol was recovered to the organic phase.•Most of water was attracted to the aqueous phase.•&gt;97% salt-free biobutanol was obtained. Compared with bioethanol, biobutanol with higher energy density and lower vapor pressure is more suitable as a fuel for motor engines. However, the typical low acetone-butanol-ethanol (ABE) concentration hinders the competitiveness of biobutanol because of 1-butanol tolerance. In addition, the dehydration of 1-butanol involves the separation of 1-butanol + water heterogeneous azeotrope, which was usually achieved in a two-column distillation + decantation system. A new process based on the determination of the salt + 1-butanol + water system was proposed to separate biobutanol from a 1-butanol + water system. The salting out resulted in the formation of an organic solvent-rich phase and an aqueous phase. All the 1-butanol in the water-rich phase was recovered to the organic phase, and most of the water in the 1-butanol-rich phase was attracted to the aqueous phase by the salting-out effects of the electrolytes, namely potassium carbonate, dipotassium hydrogen phosphate, tripotassium phosphate, and potassium pyrophosphate. This effect produces a top phase containing greater than 97% salt-free 1-butanol. The salting-out effect, the solubility, and the solvation effect of an electrolyte play essential roles in the separation of 1-butanol.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2020.118402</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acetone ; Biobutanol ; Biofuel, salting-out ; Biofuels ; Butanol ; Competitiveness ; Decantation ; Dehydration ; Distillation ; Distilled water ; Electrolytes ; Ethanol ; Flux density ; Potassium ; Potassium carbonate ; Potassium phosphate ; Potassium phosphates ; Recovery ; Salting ; Salts ; Separation ; Setschenow equation ; Solvation ; Vapor pressure</subject><ispartof>Fuel (Guildford), 2020-10, Vol.278, p.118402, Article 118402</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-3f3a5842c6ec7a8e1b5cedef4ba76524d06b53ae56794d632fea6e57b01bacde3</citedby><cites>FETCH-LOGICAL-c328t-3f3a5842c6ec7a8e1b5cedef4ba76524d06b53ae56794d632fea6e57b01bacde3</cites><orcidid>0000-0001-5829-0045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2020.118402$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Fu, Chuhan</creatorcontrib><creatorcontrib>Li, Zhuoxi</creatorcontrib><creatorcontrib>Song, Wenli</creatorcontrib><creatorcontrib>Yi, Conghua</creatorcontrib><creatorcontrib>Xie, Shaoqu</creatorcontrib><title>A new process for separating biofuel based on the salt + 1-butanol + water system</title><title>Fuel (Guildford)</title><description>•A new process for separating biobutanol.•Biobutanol was recovered to the organic phase.•Most of water was attracted to the aqueous phase.•&gt;97% salt-free biobutanol was obtained. Compared with bioethanol, biobutanol with higher energy density and lower vapor pressure is more suitable as a fuel for motor engines. However, the typical low acetone-butanol-ethanol (ABE) concentration hinders the competitiveness of biobutanol because of 1-butanol tolerance. In addition, the dehydration of 1-butanol involves the separation of 1-butanol + water heterogeneous azeotrope, which was usually achieved in a two-column distillation + decantation system. A new process based on the determination of the salt + 1-butanol + water system was proposed to separate biobutanol from a 1-butanol + water system. The salting out resulted in the formation of an organic solvent-rich phase and an aqueous phase. All the 1-butanol in the water-rich phase was recovered to the organic phase, and most of the water in the 1-butanol-rich phase was attracted to the aqueous phase by the salting-out effects of the electrolytes, namely potassium carbonate, dipotassium hydrogen phosphate, tripotassium phosphate, and potassium pyrophosphate. This effect produces a top phase containing greater than 97% salt-free 1-butanol. The salting-out effect, the solubility, and the solvation effect of an electrolyte play essential roles in the separation of 1-butanol.</description><subject>Acetone</subject><subject>Biobutanol</subject><subject>Biofuel, salting-out</subject><subject>Biofuels</subject><subject>Butanol</subject><subject>Competitiveness</subject><subject>Decantation</subject><subject>Dehydration</subject><subject>Distillation</subject><subject>Distilled water</subject><subject>Electrolytes</subject><subject>Ethanol</subject><subject>Flux density</subject><subject>Potassium</subject><subject>Potassium carbonate</subject><subject>Potassium phosphate</subject><subject>Potassium phosphates</subject><subject>Recovery</subject><subject>Salting</subject><subject>Salts</subject><subject>Separation</subject><subject>Setschenow equation</subject><subject>Solvation</subject><subject>Vapor pressure</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLEEaX4EdtB4lJVvKRKXOjZsp0NJEqTYjtU_Zt-S78Ml3DmtNrVzOzMIHRNyYwSKu-aWTVAO2OEpQMtcsJO0IQWimeKCn6KJiShMsYlPUcXITSEEFWIfIJWc9zBFm987yAEXPUeB9gYb2LdfWBb90ddbE2AEvcdjp-Ag2njYX972NPMDtF0ffu7bU2ERN6FCOtLdFaZNsDV35yi1dPj--IlW749vy7my8xxVsSMV9yIImdOglOmAGqFgxKq3BolBctLIq3gBoRU93kpOavASBDKEmqNK4FP0c2om_x_DRCibvrBd-mlZnkuFVMpd0KxEeV8H4KHSm98vTZ-pynRx_p0o48x9bE-PdaXSA8jCZL_7xq8Dq6GLvmrPbioy77-j_4DeaJ70w</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Fu, Chuhan</creator><creator>Li, Zhuoxi</creator><creator>Song, Wenli</creator><creator>Yi, Conghua</creator><creator>Xie, Shaoqu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-5829-0045</orcidid></search><sort><creationdate>20201015</creationdate><title>A new process for separating biofuel based on the salt + 1-butanol + water system</title><author>Fu, Chuhan ; Li, Zhuoxi ; Song, Wenli ; Yi, Conghua ; Xie, Shaoqu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-3f3a5842c6ec7a8e1b5cedef4ba76524d06b53ae56794d632fea6e57b01bacde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetone</topic><topic>Biobutanol</topic><topic>Biofuel, salting-out</topic><topic>Biofuels</topic><topic>Butanol</topic><topic>Competitiveness</topic><topic>Decantation</topic><topic>Dehydration</topic><topic>Distillation</topic><topic>Distilled water</topic><topic>Electrolytes</topic><topic>Ethanol</topic><topic>Flux density</topic><topic>Potassium</topic><topic>Potassium carbonate</topic><topic>Potassium phosphate</topic><topic>Potassium phosphates</topic><topic>Recovery</topic><topic>Salting</topic><topic>Salts</topic><topic>Separation</topic><topic>Setschenow equation</topic><topic>Solvation</topic><topic>Vapor pressure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Chuhan</creatorcontrib><creatorcontrib>Li, Zhuoxi</creatorcontrib><creatorcontrib>Song, Wenli</creatorcontrib><creatorcontrib>Yi, Conghua</creatorcontrib><creatorcontrib>Xie, Shaoqu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Chuhan</au><au>Li, Zhuoxi</au><au>Song, Wenli</au><au>Yi, Conghua</au><au>Xie, Shaoqu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new process for separating biofuel based on the salt + 1-butanol + water system</atitle><jtitle>Fuel (Guildford)</jtitle><date>2020-10-15</date><risdate>2020</risdate><volume>278</volume><spage>118402</spage><pages>118402-</pages><artnum>118402</artnum><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•A new process for separating biobutanol.•Biobutanol was recovered to the organic phase.•Most of water was attracted to the aqueous phase.•&gt;97% salt-free biobutanol was obtained. Compared with bioethanol, biobutanol with higher energy density and lower vapor pressure is more suitable as a fuel for motor engines. However, the typical low acetone-butanol-ethanol (ABE) concentration hinders the competitiveness of biobutanol because of 1-butanol tolerance. In addition, the dehydration of 1-butanol involves the separation of 1-butanol + water heterogeneous azeotrope, which was usually achieved in a two-column distillation + decantation system. A new process based on the determination of the salt + 1-butanol + water system was proposed to separate biobutanol from a 1-butanol + water system. The salting out resulted in the formation of an organic solvent-rich phase and an aqueous phase. All the 1-butanol in the water-rich phase was recovered to the organic phase, and most of the water in the 1-butanol-rich phase was attracted to the aqueous phase by the salting-out effects of the electrolytes, namely potassium carbonate, dipotassium hydrogen phosphate, tripotassium phosphate, and potassium pyrophosphate. This effect produces a top phase containing greater than 97% salt-free 1-butanol. The salting-out effect, the solubility, and the solvation effect of an electrolyte play essential roles in the separation of 1-butanol.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2020.118402</doi><orcidid>https://orcid.org/0000-0001-5829-0045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2020-10, Vol.278, p.118402, Article 118402
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2446727001
source Elsevier ScienceDirect Journals
subjects Acetone
Biobutanol
Biofuel, salting-out
Biofuels
Butanol
Competitiveness
Decantation
Dehydration
Distillation
Distilled water
Electrolytes
Ethanol
Flux density
Potassium
Potassium carbonate
Potassium phosphate
Potassium phosphates
Recovery
Salting
Salts
Separation
Setschenow equation
Solvation
Vapor pressure
title A new process for separating biofuel based on the salt + 1-butanol + water system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20process%20for%20separating%20biofuel%20based%20on%20the%20salt%C2%A0+%C2%A01-butanol%C2%A0+%C2%A0water%20system&rft.jtitle=Fuel%20(Guildford)&rft.au=Fu,%20Chuhan&rft.date=2020-10-15&rft.volume=278&rft.spage=118402&rft.pages=118402-&rft.artnum=118402&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2020.118402&rft_dat=%3Cproquest_cross%3E2446727001%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446727001&rft_id=info:pmid/&rft_els_id=S0016236120313983&rfr_iscdi=true