Changes in surface structure and mechanical characteristics of Al–5 wt%Si alloy after irradiation by electron beam

•Microhardness increased.•Grain size amounted to 500–800 nm.•Structure includes micropores. The modification of Al–5 wt%Si alloy surface by electron beam in the regimes being different in the energy density of electron beam (10, 20, 30, 40 and 50 J/cm2) and the pulse duration (50 and 200 μs) was per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2020-09, Vol.275, p.128105, Article 128105
Hauptverfasser: Ivanov, Yu.F., Zaguliaev, D.V., Glezer, A.M., Gromov, V.E., Abaturova, A.A., Leonov, A.A., Semin, A.P., Sundeev, R.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 128105
container_title Materials letters
container_volume 275
creator Ivanov, Yu.F.
Zaguliaev, D.V.
Glezer, A.M.
Gromov, V.E.
Abaturova, A.A.
Leonov, A.A.
Semin, A.P.
Sundeev, R.V.
description •Microhardness increased.•Grain size amounted to 500–800 nm.•Structure includes micropores. The modification of Al–5 wt%Si alloy surface by electron beam in the regimes being different in the energy density of electron beam (10, 20, 30, 40 and 50 J/cm2) and the pulse duration (50 and 200 μs) was performed in the research. It was established that the maximum increase in microhardness was observed at electron beam parameters of 30 J/cm2, 200 μs and 50 J/cm2, 50 μs; and microhardness values for each regime amounted to 860 MPa and 950 MPa, respectively. The microhardness value of the cast alloy equals to 520 MPa. The irradiation surface morphology at beam parameters of 30 J/cm2, 200 μs is characterised by numerous micropores and microcracks. The irradiation regime of 50 J/cm2, 50 μs leads to complete dissolution of intermetallide and silicon particles in surface layer; the crack density per unit of sample surface decreases in comparison with the regime of 30 J/cm2, 200 μs. The surface layer is characterised by the high-speed cellular crystallization structure with dimensions from 500 to 800 nm formed in grain volume that may be the reason for the increase in strength properties of the material.
doi_str_mv 10.1016/j.matlet.2020.128105
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446723567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X20308107</els_id><sourcerecordid>2446723567</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-dbda2365d9086ac99cc9a47bb661c35b947258afe7ac2a920a3941fd582dbcd33</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EEtvSN-BgCXHM4thOHF8qVau2IFXiAEjcrMl4Al5lk9Z2QHvjHfoCfRYehSfBq3DmNL9G3z-j_2fsdS22tajbd_vtAfJIeSuFLCvZ1aJ5xjZ1Z1SlrbHP2aZgpmqM-fqSnaW0F0JoK_SGLbvvMH2jxMPE0xIHQOIpxwXzEonD5PmBsCABYeRFRMBMMaQcMPF54Ffjn1-Pze-nn_ntp8BhHOcjh6EgPMQIPkAO88T7I6eRMMeTJji8Yi8GGBNd_Jvn7MvN9efd--ru4-2H3dVdhUrpXPneg1Rt463oWkBrES1o0_dtW6NqequNbDoYyABKsFKAsroefNNJ36NX6py9We_ex_lhoZTdfl7iVF46qXVrpGpaUyi9UhjnlCIN7j6GA8Sjq4U7Fez2bi3YnQp2a8HFdrnaqCT4ESi6hIEmJB9iyer8HP5_4C8lKYlo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446723567</pqid></control><display><type>article</type><title>Changes in surface structure and mechanical characteristics of Al–5 wt%Si alloy after irradiation by electron beam</title><source>Elsevier ScienceDirect Journals</source><creator>Ivanov, Yu.F. ; Zaguliaev, D.V. ; Glezer, A.M. ; Gromov, V.E. ; Abaturova, A.A. ; Leonov, A.A. ; Semin, A.P. ; Sundeev, R.V.</creator><creatorcontrib>Ivanov, Yu.F. ; Zaguliaev, D.V. ; Glezer, A.M. ; Gromov, V.E. ; Abaturova, A.A. ; Leonov, A.A. ; Semin, A.P. ; Sundeev, R.V.</creatorcontrib><description>•Microhardness increased.•Grain size amounted to 500–800 nm.•Structure includes micropores. The modification of Al–5 wt%Si alloy surface by electron beam in the regimes being different in the energy density of electron beam (10, 20, 30, 40 and 50 J/cm2) and the pulse duration (50 and 200 μs) was performed in the research. It was established that the maximum increase in microhardness was observed at electron beam parameters of 30 J/cm2, 200 μs and 50 J/cm2, 50 μs; and microhardness values for each regime amounted to 860 MPa and 950 MPa, respectively. The microhardness value of the cast alloy equals to 520 MPa. The irradiation surface morphology at beam parameters of 30 J/cm2, 200 μs is characterised by numerous micropores and microcracks. The irradiation regime of 50 J/cm2, 50 μs leads to complete dissolution of intermetallide and silicon particles in surface layer; the crack density per unit of sample surface decreases in comparison with the regime of 30 J/cm2, 200 μs. The surface layer is characterised by the high-speed cellular crystallization structure with dimensions from 500 to 800 nm formed in grain volume that may be the reason for the increase in strength properties of the material.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2020.128105</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Al–5wt%Si ; Casting alloys ; Cellular structure ; Crystallization ; Electron beam ; Electron beams ; Flux density ; Irradiated ; Irradiation ; Materials science ; Mechanical properties ; Microcracks ; Microhardness ; Morphology ; Parameters ; Pulse duration ; Silicon base alloys ; Surface layers ; Surface structure</subject><ispartof>Materials letters, 2020-09, Vol.275, p.128105, Article 128105</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-dbda2365d9086ac99cc9a47bb661c35b947258afe7ac2a920a3941fd582dbcd33</citedby><cites>FETCH-LOGICAL-c334t-dbda2365d9086ac99cc9a47bb661c35b947258afe7ac2a920a3941fd582dbcd33</cites><orcidid>0000-0002-5147-5343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167577X20308107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Ivanov, Yu.F.</creatorcontrib><creatorcontrib>Zaguliaev, D.V.</creatorcontrib><creatorcontrib>Glezer, A.M.</creatorcontrib><creatorcontrib>Gromov, V.E.</creatorcontrib><creatorcontrib>Abaturova, A.A.</creatorcontrib><creatorcontrib>Leonov, A.A.</creatorcontrib><creatorcontrib>Semin, A.P.</creatorcontrib><creatorcontrib>Sundeev, R.V.</creatorcontrib><title>Changes in surface structure and mechanical characteristics of Al–5 wt%Si alloy after irradiation by electron beam</title><title>Materials letters</title><description>•Microhardness increased.•Grain size amounted to 500–800 nm.•Structure includes micropores. The modification of Al–5 wt%Si alloy surface by electron beam in the regimes being different in the energy density of electron beam (10, 20, 30, 40 and 50 J/cm2) and the pulse duration (50 and 200 μs) was performed in the research. It was established that the maximum increase in microhardness was observed at electron beam parameters of 30 J/cm2, 200 μs and 50 J/cm2, 50 μs; and microhardness values for each regime amounted to 860 MPa and 950 MPa, respectively. The microhardness value of the cast alloy equals to 520 MPa. The irradiation surface morphology at beam parameters of 30 J/cm2, 200 μs is characterised by numerous micropores and microcracks. The irradiation regime of 50 J/cm2, 50 μs leads to complete dissolution of intermetallide and silicon particles in surface layer; the crack density per unit of sample surface decreases in comparison with the regime of 30 J/cm2, 200 μs. The surface layer is characterised by the high-speed cellular crystallization structure with dimensions from 500 to 800 nm formed in grain volume that may be the reason for the increase in strength properties of the material.</description><subject>Al–5wt%Si</subject><subject>Casting alloys</subject><subject>Cellular structure</subject><subject>Crystallization</subject><subject>Electron beam</subject><subject>Electron beams</subject><subject>Flux density</subject><subject>Irradiated</subject><subject>Irradiation</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Microcracks</subject><subject>Microhardness</subject><subject>Morphology</subject><subject>Parameters</subject><subject>Pulse duration</subject><subject>Silicon base alloys</subject><subject>Surface layers</subject><subject>Surface structure</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi0EEtvSN-BgCXHM4thOHF8qVau2IFXiAEjcrMl4Al5lk9Z2QHvjHfoCfRYehSfBq3DmNL9G3z-j_2fsdS22tajbd_vtAfJIeSuFLCvZ1aJ5xjZ1Z1SlrbHP2aZgpmqM-fqSnaW0F0JoK_SGLbvvMH2jxMPE0xIHQOIpxwXzEonD5PmBsCABYeRFRMBMMaQcMPF54Ffjn1-Pze-nn_ntp8BhHOcjh6EgPMQIPkAO88T7I6eRMMeTJji8Yi8GGBNd_Jvn7MvN9efd--ru4-2H3dVdhUrpXPneg1Rt463oWkBrES1o0_dtW6NqequNbDoYyABKsFKAsroefNNJ36NX6py9We_ex_lhoZTdfl7iVF46qXVrpGpaUyi9UhjnlCIN7j6GA8Sjq4U7Fez2bi3YnQp2a8HFdrnaqCT4ESi6hIEmJB9iyer8HP5_4C8lKYlo</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Ivanov, Yu.F.</creator><creator>Zaguliaev, D.V.</creator><creator>Glezer, A.M.</creator><creator>Gromov, V.E.</creator><creator>Abaturova, A.A.</creator><creator>Leonov, A.A.</creator><creator>Semin, A.P.</creator><creator>Sundeev, R.V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5147-5343</orcidid></search><sort><creationdate>20200915</creationdate><title>Changes in surface structure and mechanical characteristics of Al–5 wt%Si alloy after irradiation by electron beam</title><author>Ivanov, Yu.F. ; Zaguliaev, D.V. ; Glezer, A.M. ; Gromov, V.E. ; Abaturova, A.A. ; Leonov, A.A. ; Semin, A.P. ; Sundeev, R.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-dbda2365d9086ac99cc9a47bb661c35b947258afe7ac2a920a3941fd582dbcd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Al–5wt%Si</topic><topic>Casting alloys</topic><topic>Cellular structure</topic><topic>Crystallization</topic><topic>Electron beam</topic><topic>Electron beams</topic><topic>Flux density</topic><topic>Irradiated</topic><topic>Irradiation</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Microcracks</topic><topic>Microhardness</topic><topic>Morphology</topic><topic>Parameters</topic><topic>Pulse duration</topic><topic>Silicon base alloys</topic><topic>Surface layers</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, Yu.F.</creatorcontrib><creatorcontrib>Zaguliaev, D.V.</creatorcontrib><creatorcontrib>Glezer, A.M.</creatorcontrib><creatorcontrib>Gromov, V.E.</creatorcontrib><creatorcontrib>Abaturova, A.A.</creatorcontrib><creatorcontrib>Leonov, A.A.</creatorcontrib><creatorcontrib>Semin, A.P.</creatorcontrib><creatorcontrib>Sundeev, R.V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, Yu.F.</au><au>Zaguliaev, D.V.</au><au>Glezer, A.M.</au><au>Gromov, V.E.</au><au>Abaturova, A.A.</au><au>Leonov, A.A.</au><au>Semin, A.P.</au><au>Sundeev, R.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in surface structure and mechanical characteristics of Al–5 wt%Si alloy after irradiation by electron beam</atitle><jtitle>Materials letters</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>275</volume><spage>128105</spage><pages>128105-</pages><artnum>128105</artnum><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>•Microhardness increased.•Grain size amounted to 500–800 nm.•Structure includes micropores. The modification of Al–5 wt%Si alloy surface by electron beam in the regimes being different in the energy density of electron beam (10, 20, 30, 40 and 50 J/cm2) and the pulse duration (50 and 200 μs) was performed in the research. It was established that the maximum increase in microhardness was observed at electron beam parameters of 30 J/cm2, 200 μs and 50 J/cm2, 50 μs; and microhardness values for each regime amounted to 860 MPa and 950 MPa, respectively. The microhardness value of the cast alloy equals to 520 MPa. The irradiation surface morphology at beam parameters of 30 J/cm2, 200 μs is characterised by numerous micropores and microcracks. The irradiation regime of 50 J/cm2, 50 μs leads to complete dissolution of intermetallide and silicon particles in surface layer; the crack density per unit of sample surface decreases in comparison with the regime of 30 J/cm2, 200 μs. The surface layer is characterised by the high-speed cellular crystallization structure with dimensions from 500 to 800 nm formed in grain volume that may be the reason for the increase in strength properties of the material.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2020.128105</doi><orcidid>https://orcid.org/0000-0002-5147-5343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2020-09, Vol.275, p.128105, Article 128105
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_2446723567
source Elsevier ScienceDirect Journals
subjects Al–5wt%Si
Casting alloys
Cellular structure
Crystallization
Electron beam
Electron beams
Flux density
Irradiated
Irradiation
Materials science
Mechanical properties
Microcracks
Microhardness
Morphology
Parameters
Pulse duration
Silicon base alloys
Surface layers
Surface structure
title Changes in surface structure and mechanical characteristics of Al–5 wt%Si alloy after irradiation by electron beam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A18%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20surface%20structure%20and%20mechanical%20characteristics%20of%20Al%E2%80%935%C2%A0wt%25Si%20alloy%20after%20irradiation%20by%20electron%20beam&rft.jtitle=Materials%20letters&rft.au=Ivanov,%20Yu.F.&rft.date=2020-09-15&rft.volume=275&rft.spage=128105&rft.pages=128105-&rft.artnum=128105&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2020.128105&rft_dat=%3Cproquest_cross%3E2446723567%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446723567&rft_id=info:pmid/&rft_els_id=S0167577X20308107&rfr_iscdi=true