Sommerfeld-type integrals for discrete diffraction problems

Three problems for a discrete analog of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: (1) the problem with a point source on an entire plane; (2) the problem of diffraction by a Dirichlet half-line; (3) the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wave motion 2020-09, Vol.97, p.102606, Article 102606
Hauptverfasser: Shanin, A.V., Korolkov, A.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102606
container_title Wave motion
container_volume 97
creator Shanin, A.V.
Korolkov, A.I.
description Three problems for a discrete analog of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: (1) the problem with a point source on an entire plane; (2) the problem of diffraction by a Dirichlet half-line; (3) the problem of diffraction by a Dirichlet right angle. It is shown that the total field can be represented as an integral of an algebraic function over a contour drawn on some manifold. The latter is a torus. As a result, explicit solutions are obtained in terms of recursive relations (for the Green’s function), algebraic functions (for the half-line problem), or elliptic functions (for the right angle problem). •Three problems for a discrete analog of the Helmholtz equation are studied.•The problem with a point source on an entire plane is studied.•The problem of diffraction by a Dirichlet half-line is studied.•The problem of diffraction by a Dirichlet right angle is studied.•The plane wave decomposition and the Sommerfeld integral approach are applied.•The solution is obtained in terms of the algebraic functions.
doi_str_mv 10.1016/j.wavemoti.2020.102606
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446723119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165212520300135</els_id><sourcerecordid>2446723119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-a409601cb17e13cb8fa50d952bd4568a40eeed47adda6909370bdf7c88674cf33</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BSl47pqvJi1elMUvWPCggreQJhNJ2bZrkl3Zf2-W6tnTDDPvOy_zIHRJ8IJgIq67xbfeQT8mv6CYHoZUYHGEZqSWdckZ-zhGsyysSkpodYrOYuwwxkSyZoZuXse-h-Bgbcu030DhhwSfQa9j4cZQWB9NgAS5cS5ok_w4FJswtmvo4zk6cVkIF791jt4f7t-WT-Xq5fF5ebcqDeM4lZrjRmBiWiKBMNPWTlfYNhVtLa9EndcAYLnU1mrR4IZJ3FonTV0LyY1jbI6uprs5-GsLMalu3IYhRyrKuZCUEdJklZhUJowxBnBqE3yvw14RrA6gVKf-QKkDKDWBysbbyQj5h52HoKLxMBiwPoBJyo7-vxM_Syx1bA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446723119</pqid></control><display><type>article</type><title>Sommerfeld-type integrals for discrete diffraction problems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shanin, A.V. ; Korolkov, A.I.</creator><creatorcontrib>Shanin, A.V. ; Korolkov, A.I.</creatorcontrib><description>Three problems for a discrete analog of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: (1) the problem with a point source on an entire plane; (2) the problem of diffraction by a Dirichlet half-line; (3) the problem of diffraction by a Dirichlet right angle. It is shown that the total field can be represented as an integral of an algebraic function over a contour drawn on some manifold. The latter is a torus. As a result, explicit solutions are obtained in terms of recursive relations (for the Green’s function), algebraic functions (for the half-line problem), or elliptic functions (for the right angle problem). •Three problems for a discrete analog of the Helmholtz equation are studied.•The problem with a point source on an entire plane is studied.•The problem of diffraction by a Dirichlet half-line is studied.•The problem of diffraction by a Dirichlet right angle is studied.•The plane wave decomposition and the Sommerfeld integral approach are applied.•The solution is obtained in terms of the algebraic functions.</description><identifier>ISSN: 0165-2125</identifier><identifier>EISSN: 1878-433X</identifier><identifier>DOI: 10.1016/j.wavemoti.2020.102606</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Canonical diffraction problem ; Diffraction ; Dirichlet problem ; Discrete element method ; Discrete green’s function ; Discrete Helmholtz equation ; Dispersion equation ; Elliptic functions ; Elliptic integrals ; Green's functions ; Helmholtz equations ; Integrals ; Mathematical analysis ; Mathematical functions ; Mathematical problems ; Plane waves ; Reflection method ; Sommerfeld integral ; Studies ; Toruses</subject><ispartof>Wave motion, 2020-09, Vol.97, p.102606, Article 102606</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-a409601cb17e13cb8fa50d952bd4568a40eeed47adda6909370bdf7c88674cf33</citedby><cites>FETCH-LOGICAL-c340t-a409601cb17e13cb8fa50d952bd4568a40eeed47adda6909370bdf7c88674cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.wavemoti.2020.102606$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shanin, A.V.</creatorcontrib><creatorcontrib>Korolkov, A.I.</creatorcontrib><title>Sommerfeld-type integrals for discrete diffraction problems</title><title>Wave motion</title><description>Three problems for a discrete analog of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: (1) the problem with a point source on an entire plane; (2) the problem of diffraction by a Dirichlet half-line; (3) the problem of diffraction by a Dirichlet right angle. It is shown that the total field can be represented as an integral of an algebraic function over a contour drawn on some manifold. The latter is a torus. As a result, explicit solutions are obtained in terms of recursive relations (for the Green’s function), algebraic functions (for the half-line problem), or elliptic functions (for the right angle problem). •Three problems for a discrete analog of the Helmholtz equation are studied.•The problem with a point source on an entire plane is studied.•The problem of diffraction by a Dirichlet half-line is studied.•The problem of diffraction by a Dirichlet right angle is studied.•The plane wave decomposition and the Sommerfeld integral approach are applied.•The solution is obtained in terms of the algebraic functions.</description><subject>Algebra</subject><subject>Canonical diffraction problem</subject><subject>Diffraction</subject><subject>Dirichlet problem</subject><subject>Discrete element method</subject><subject>Discrete green’s function</subject><subject>Discrete Helmholtz equation</subject><subject>Dispersion equation</subject><subject>Elliptic functions</subject><subject>Elliptic integrals</subject><subject>Green's functions</subject><subject>Helmholtz equations</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Mathematical problems</subject><subject>Plane waves</subject><subject>Reflection method</subject><subject>Sommerfeld integral</subject><subject>Studies</subject><subject>Toruses</subject><issn>0165-2125</issn><issn>1878-433X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BSl47pqvJi1elMUvWPCggreQJhNJ2bZrkl3Zf2-W6tnTDDPvOy_zIHRJ8IJgIq67xbfeQT8mv6CYHoZUYHGEZqSWdckZ-zhGsyysSkpodYrOYuwwxkSyZoZuXse-h-Bgbcu030DhhwSfQa9j4cZQWB9NgAS5cS5ok_w4FJswtmvo4zk6cVkIF791jt4f7t-WT-Xq5fF5ebcqDeM4lZrjRmBiWiKBMNPWTlfYNhVtLa9EndcAYLnU1mrR4IZJ3FonTV0LyY1jbI6uprs5-GsLMalu3IYhRyrKuZCUEdJklZhUJowxBnBqE3yvw14RrA6gVKf-QKkDKDWBysbbyQj5h52HoKLxMBiwPoBJyo7-vxM_Syx1bA</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Shanin, A.V.</creator><creator>Korolkov, A.I.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202009</creationdate><title>Sommerfeld-type integrals for discrete diffraction problems</title><author>Shanin, A.V. ; Korolkov, A.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-a409601cb17e13cb8fa50d952bd4568a40eeed47adda6909370bdf7c88674cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Canonical diffraction problem</topic><topic>Diffraction</topic><topic>Dirichlet problem</topic><topic>Discrete element method</topic><topic>Discrete green’s function</topic><topic>Discrete Helmholtz equation</topic><topic>Dispersion equation</topic><topic>Elliptic functions</topic><topic>Elliptic integrals</topic><topic>Green's functions</topic><topic>Helmholtz equations</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Mathematical problems</topic><topic>Plane waves</topic><topic>Reflection method</topic><topic>Sommerfeld integral</topic><topic>Studies</topic><topic>Toruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanin, A.V.</creatorcontrib><creatorcontrib>Korolkov, A.I.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Wave motion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanin, A.V.</au><au>Korolkov, A.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sommerfeld-type integrals for discrete diffraction problems</atitle><jtitle>Wave motion</jtitle><date>2020-09</date><risdate>2020</risdate><volume>97</volume><spage>102606</spage><pages>102606-</pages><artnum>102606</artnum><issn>0165-2125</issn><eissn>1878-433X</eissn><abstract>Three problems for a discrete analog of the Helmholtz equation are studied analytically using the plane wave decomposition and the Sommerfeld integral approach. They are: (1) the problem with a point source on an entire plane; (2) the problem of diffraction by a Dirichlet half-line; (3) the problem of diffraction by a Dirichlet right angle. It is shown that the total field can be represented as an integral of an algebraic function over a contour drawn on some manifold. The latter is a torus. As a result, explicit solutions are obtained in terms of recursive relations (for the Green’s function), algebraic functions (for the half-line problem), or elliptic functions (for the right angle problem). •Three problems for a discrete analog of the Helmholtz equation are studied.•The problem with a point source on an entire plane is studied.•The problem of diffraction by a Dirichlet half-line is studied.•The problem of diffraction by a Dirichlet right angle is studied.•The plane wave decomposition and the Sommerfeld integral approach are applied.•The solution is obtained in terms of the algebraic functions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wavemoti.2020.102606</doi></addata></record>
fulltext fulltext
identifier ISSN: 0165-2125
ispartof Wave motion, 2020-09, Vol.97, p.102606, Article 102606
issn 0165-2125
1878-433X
language eng
recordid cdi_proquest_journals_2446723119
source Elsevier ScienceDirect Journals Complete
subjects Algebra
Canonical diffraction problem
Diffraction
Dirichlet problem
Discrete element method
Discrete green’s function
Discrete Helmholtz equation
Dispersion equation
Elliptic functions
Elliptic integrals
Green's functions
Helmholtz equations
Integrals
Mathematical analysis
Mathematical functions
Mathematical problems
Plane waves
Reflection method
Sommerfeld integral
Studies
Toruses
title Sommerfeld-type integrals for discrete diffraction problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sommerfeld-type%20integrals%20for%20discrete%20diffraction%20problems&rft.jtitle=Wave%20motion&rft.au=Shanin,%20A.V.&rft.date=2020-09&rft.volume=97&rft.spage=102606&rft.pages=102606-&rft.artnum=102606&rft.issn=0165-2125&rft.eissn=1878-433X&rft_id=info:doi/10.1016/j.wavemoti.2020.102606&rft_dat=%3Cproquest_cross%3E2446723119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446723119&rft_id=info:pmid/&rft_els_id=S0165212520300135&rfr_iscdi=true