The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices

•We investigate the effect of the GaN epilayer thickness and thickness-dependent thermal conductivity on the thermal resistance of GaN power transistors heteroepitaxially integrated with diamond (GaN-on-diamond).•A typical GaN epilayer thickness of 1 µm can provide a fairly low device thermal resist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2020-09, Vol.158, p.119992, Article 119992
Hauptverfasser: Song, Changhwan, Kim, Jihyun, Cho, Jungwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119992
container_title International journal of heat and mass transfer
container_volume 158
creator Song, Changhwan
Kim, Jihyun
Cho, Jungwan
description •We investigate the effect of the GaN epilayer thickness and thickness-dependent thermal conductivity on the thermal resistance of GaN power transistors heteroepitaxially integrated with diamond (GaN-on-diamond).•A typical GaN epilayer thickness of 1 µm can provide a fairly low device thermal resistance, when compared to those at other thicknesses.•We emphasize the use of the thickness-dependent, in-plane thermal conductivity of the GaN epilayer for an accurate thermal simulation of GaN devices. Gallium nitride (GaN) heteroepitaxially integrated with diamond (GaN-on-diamond) is promising for high-power electronics due to the excellent heat spreading capability of diamond. A number of past works have examined the thermal properties of GaN-on-diamond devices, particularly the diamond thermal conductivity and the thermal boundary resistance (TBR) between the GaN and diamond, as well as the impact of these two properties on the thermal resistance of GaN-on-diamond devices. Much less investigated, however, is the effect of the thickness of the GaN epilayer on the thermal resistance of GaN-on-diamond devices. Here, we examine this effect through combining finite element simulations with calculations using a semi-classical phonon transport model. The latter considers phonon scattering on defects and interfaces and is utilized here to predict the in-plane thermal conductivity of the GaN epilayer versus layer thickness. This aims at considering the thermal spreading resistance within the GaN in a more accurate manner, which also depends on the layer thickness. Our simulation results indicate that with increasing GaN layer thickness the device thermal resistance monotonically decreases until it reaches the minimum at GaN thicknesses of ∼3.6 and ∼5.8 μm for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. A typical GaN thickness of 1 µm can provide a fairly low device thermal resistance, approximately 6 and 20% higher than the minimum thermal resistances for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. Reducing the GaN thickness below 1 µm can substantially increase the device thermal resistance, particularly when the GaN/diamond TBR is high, predominantly due to the increasing contribution of the interface. Increasing the GaN thickness above 1 µm can decrease the device thermal resistance but this change is not significant. Our findings presented here can offer a more in-depth understanding of near-junction thermal transport in GaN-on-diamond trans
doi_str_mv 10.1016/j.ijheatmasstransfer.2020.119992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446722385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931020306773</els_id><sourcerecordid>2446722385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-2cb8b660aacaac3abe2bbe8fe2c7cfe29ef4b8a701325822184218d256d544133</originalsourceid><addsrcrecordid>eNqNkMtOAyEUQInRxFr9BxI3bqjAMK-dptGqaXRT14RhLiljCxVok_69NOPOjQkXch855B6E7hidMcqq-2FmhzWotFUxpqBcNBBmnPLcZm3b8jM0YU3dEs6a9hxNKGU1aQtGL9FVjMMppaKaILNaAwZjQCfsDV6odww7u1FHCDitrf5yECP2LieAHahAhr3TyY6VsFUbHCDamJTT8Esg3pHeqq13Pe7hYDXEa3Rh1CbCze87RZ_PT6v5C1l-LF7nj0uiRVElwnXXdFVFldL5FKoD3nXQGOC61vluwYiuUTVlBS8bnncTOXpeVn0pBCuKKbodubvgv_cQkxz8Prj8peRCVDXnRVPmqYdxSgcfYwAjd8FuVThKRuXJrhzkX7vyZFeOdjPibURA3uZgczdqC9lBb0N2KXtv_w_7AZePkLY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446722385</pqid></control><display><type>article</type><title>The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices</title><source>Access via ScienceDirect (Elsevier)</source><creator>Song, Changhwan ; Kim, Jihyun ; Cho, Jungwan</creator><creatorcontrib>Song, Changhwan ; Kim, Jihyun ; Cho, Jungwan</creatorcontrib><description>•We investigate the effect of the GaN epilayer thickness and thickness-dependent thermal conductivity on the thermal resistance of GaN power transistors heteroepitaxially integrated with diamond (GaN-on-diamond).•A typical GaN epilayer thickness of 1 µm can provide a fairly low device thermal resistance, when compared to those at other thicknesses.•We emphasize the use of the thickness-dependent, in-plane thermal conductivity of the GaN epilayer for an accurate thermal simulation of GaN devices. Gallium nitride (GaN) heteroepitaxially integrated with diamond (GaN-on-diamond) is promising for high-power electronics due to the excellent heat spreading capability of diamond. A number of past works have examined the thermal properties of GaN-on-diamond devices, particularly the diamond thermal conductivity and the thermal boundary resistance (TBR) between the GaN and diamond, as well as the impact of these two properties on the thermal resistance of GaN-on-diamond devices. Much less investigated, however, is the effect of the thickness of the GaN epilayer on the thermal resistance of GaN-on-diamond devices. Here, we examine this effect through combining finite element simulations with calculations using a semi-classical phonon transport model. The latter considers phonon scattering on defects and interfaces and is utilized here to predict the in-plane thermal conductivity of the GaN epilayer versus layer thickness. This aims at considering the thermal spreading resistance within the GaN in a more accurate manner, which also depends on the layer thickness. Our simulation results indicate that with increasing GaN layer thickness the device thermal resistance monotonically decreases until it reaches the minimum at GaN thicknesses of ∼3.6 and ∼5.8 μm for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. A typical GaN thickness of 1 µm can provide a fairly low device thermal resistance, approximately 6 and 20% higher than the minimum thermal resistances for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. Reducing the GaN thickness below 1 µm can substantially increase the device thermal resistance, particularly when the GaN/diamond TBR is high, predominantly due to the increasing contribution of the interface. Increasing the GaN thickness above 1 µm can decrease the device thermal resistance but this change is not significant. Our findings presented here can offer a more in-depth understanding of near-junction thermal transport in GaN-on-diamond transistors. [Display omitted]</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2020.119992</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Computer simulation ; Devices ; Diamonds ; Gallium nitrides ; GaN epilayer thickness ; GaN-on-diamond devices ; Heat conductivity ; Heat transfer ; Near-junction thermal transport ; Phonons ; Thermal boundary resistance ; Thermal conductivity ; Thermal energy ; Thermal resistance ; Thermodynamic properties ; Thickness ; Transistors</subject><ispartof>International journal of heat and mass transfer, 2020-09, Vol.158, p.119992, Article 119992</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-2cb8b660aacaac3abe2bbe8fe2c7cfe29ef4b8a701325822184218d256d544133</citedby><cites>FETCH-LOGICAL-c436t-2cb8b660aacaac3abe2bbe8fe2c7cfe29ef4b8a701325822184218d256d544133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119992$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Song, Changhwan</creatorcontrib><creatorcontrib>Kim, Jihyun</creatorcontrib><creatorcontrib>Cho, Jungwan</creatorcontrib><title>The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices</title><title>International journal of heat and mass transfer</title><description>•We investigate the effect of the GaN epilayer thickness and thickness-dependent thermal conductivity on the thermal resistance of GaN power transistors heteroepitaxially integrated with diamond (GaN-on-diamond).•A typical GaN epilayer thickness of 1 µm can provide a fairly low device thermal resistance, when compared to those at other thicknesses.•We emphasize the use of the thickness-dependent, in-plane thermal conductivity of the GaN epilayer for an accurate thermal simulation of GaN devices. Gallium nitride (GaN) heteroepitaxially integrated with diamond (GaN-on-diamond) is promising for high-power electronics due to the excellent heat spreading capability of diamond. A number of past works have examined the thermal properties of GaN-on-diamond devices, particularly the diamond thermal conductivity and the thermal boundary resistance (TBR) between the GaN and diamond, as well as the impact of these two properties on the thermal resistance of GaN-on-diamond devices. Much less investigated, however, is the effect of the thickness of the GaN epilayer on the thermal resistance of GaN-on-diamond devices. Here, we examine this effect through combining finite element simulations with calculations using a semi-classical phonon transport model. The latter considers phonon scattering on defects and interfaces and is utilized here to predict the in-plane thermal conductivity of the GaN epilayer versus layer thickness. This aims at considering the thermal spreading resistance within the GaN in a more accurate manner, which also depends on the layer thickness. Our simulation results indicate that with increasing GaN layer thickness the device thermal resistance monotonically decreases until it reaches the minimum at GaN thicknesses of ∼3.6 and ∼5.8 μm for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. A typical GaN thickness of 1 µm can provide a fairly low device thermal resistance, approximately 6 and 20% higher than the minimum thermal resistances for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. Reducing the GaN thickness below 1 µm can substantially increase the device thermal resistance, particularly when the GaN/diamond TBR is high, predominantly due to the increasing contribution of the interface. Increasing the GaN thickness above 1 µm can decrease the device thermal resistance but this change is not significant. Our findings presented here can offer a more in-depth understanding of near-junction thermal transport in GaN-on-diamond transistors. [Display omitted]</description><subject>Computer simulation</subject><subject>Devices</subject><subject>Diamonds</subject><subject>Gallium nitrides</subject><subject>GaN epilayer thickness</subject><subject>GaN-on-diamond devices</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Near-junction thermal transport</subject><subject>Phonons</subject><subject>Thermal boundary resistance</subject><subject>Thermal conductivity</subject><subject>Thermal energy</subject><subject>Thermal resistance</subject><subject>Thermodynamic properties</subject><subject>Thickness</subject><subject>Transistors</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkMtOAyEUQInRxFr9BxI3bqjAMK-dptGqaXRT14RhLiljCxVok_69NOPOjQkXch855B6E7hidMcqq-2FmhzWotFUxpqBcNBBmnPLcZm3b8jM0YU3dEs6a9hxNKGU1aQtGL9FVjMMppaKaILNaAwZjQCfsDV6odww7u1FHCDitrf5yECP2LieAHahAhr3TyY6VsFUbHCDamJTT8Esg3pHeqq13Pe7hYDXEa3Rh1CbCze87RZ_PT6v5C1l-LF7nj0uiRVElwnXXdFVFldL5FKoD3nXQGOC61vluwYiuUTVlBS8bnncTOXpeVn0pBCuKKbodubvgv_cQkxz8Prj8peRCVDXnRVPmqYdxSgcfYwAjd8FuVThKRuXJrhzkX7vyZFeOdjPibURA3uZgczdqC9lBb0N2KXtv_w_7AZePkLY</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Song, Changhwan</creator><creator>Kim, Jihyun</creator><creator>Cho, Jungwan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202009</creationdate><title>The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices</title><author>Song, Changhwan ; Kim, Jihyun ; Cho, Jungwan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-2cb8b660aacaac3abe2bbe8fe2c7cfe29ef4b8a701325822184218d256d544133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Devices</topic><topic>Diamonds</topic><topic>Gallium nitrides</topic><topic>GaN epilayer thickness</topic><topic>GaN-on-diamond devices</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Near-junction thermal transport</topic><topic>Phonons</topic><topic>Thermal boundary resistance</topic><topic>Thermal conductivity</topic><topic>Thermal energy</topic><topic>Thermal resistance</topic><topic>Thermodynamic properties</topic><topic>Thickness</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Changhwan</creatorcontrib><creatorcontrib>Kim, Jihyun</creatorcontrib><creatorcontrib>Cho, Jungwan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Changhwan</au><au>Kim, Jihyun</au><au>Cho, Jungwan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2020-09</date><risdate>2020</risdate><volume>158</volume><spage>119992</spage><pages>119992-</pages><artnum>119992</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We investigate the effect of the GaN epilayer thickness and thickness-dependent thermal conductivity on the thermal resistance of GaN power transistors heteroepitaxially integrated with diamond (GaN-on-diamond).•A typical GaN epilayer thickness of 1 µm can provide a fairly low device thermal resistance, when compared to those at other thicknesses.•We emphasize the use of the thickness-dependent, in-plane thermal conductivity of the GaN epilayer for an accurate thermal simulation of GaN devices. Gallium nitride (GaN) heteroepitaxially integrated with diamond (GaN-on-diamond) is promising for high-power electronics due to the excellent heat spreading capability of diamond. A number of past works have examined the thermal properties of GaN-on-diamond devices, particularly the diamond thermal conductivity and the thermal boundary resistance (TBR) between the GaN and diamond, as well as the impact of these two properties on the thermal resistance of GaN-on-diamond devices. Much less investigated, however, is the effect of the thickness of the GaN epilayer on the thermal resistance of GaN-on-diamond devices. Here, we examine this effect through combining finite element simulations with calculations using a semi-classical phonon transport model. The latter considers phonon scattering on defects and interfaces and is utilized here to predict the in-plane thermal conductivity of the GaN epilayer versus layer thickness. This aims at considering the thermal spreading resistance within the GaN in a more accurate manner, which also depends on the layer thickness. Our simulation results indicate that with increasing GaN layer thickness the device thermal resistance monotonically decreases until it reaches the minimum at GaN thicknesses of ∼3.6 and ∼5.8 μm for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. A typical GaN thickness of 1 µm can provide a fairly low device thermal resistance, approximately 6 and 20% higher than the minimum thermal resistances for GaN/diamond TBRs of 6.5 and 30 m2 K GW–1, respectively. Reducing the GaN thickness below 1 µm can substantially increase the device thermal resistance, particularly when the GaN/diamond TBR is high, predominantly due to the increasing contribution of the interface. Increasing the GaN thickness above 1 µm can decrease the device thermal resistance but this change is not significant. Our findings presented here can offer a more in-depth understanding of near-junction thermal transport in GaN-on-diamond transistors. [Display omitted]</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2020.119992</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2020-09, Vol.158, p.119992, Article 119992
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2446722385
source Access via ScienceDirect (Elsevier)
subjects Computer simulation
Devices
Diamonds
Gallium nitrides
GaN epilayer thickness
GaN-on-diamond devices
Heat conductivity
Heat transfer
Near-junction thermal transport
Phonons
Thermal boundary resistance
Thermal conductivity
Thermal energy
Thermal resistance
Thermodynamic properties
Thickness
Transistors
title The effect of GaN epilayer thickness on the near-junction thermal resistance of GaN-on-diamond devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effect%20of%20GaN%20epilayer%20thickness%20on%20the%20near-junction%20thermal%20resistance%20of%20GaN-on-diamond%20devices&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Song,%20Changhwan&rft.date=2020-09&rft.volume=158&rft.spage=119992&rft.pages=119992-&rft.artnum=119992&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2020.119992&rft_dat=%3Cproquest_cross%3E2446722385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446722385&rft_id=info:pmid/&rft_els_id=S0017931020306773&rfr_iscdi=true