Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds
The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2021-01, Vol.138 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 138 |
creator | Dubinenko, Gleb Zinoviev, Aleksey Bolbasov, Evgeny Kozelskaya, Anna Shesterikov, Evgeniy Novikov, Victor Tverdokhlebov, Sergei |
description | The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia. |
doi_str_mv | 10.1002/app.49662 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446718024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446718024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaW2NBFWttJ_LOsyk-RKtEFrCPHsVtXbhzsVBAWiCNwRk5CStmympHmmzdvHgCXGI0xQmQim2acCUrJERhgJFiSUcKPwaCf4YQLkZ-Csxg3CGGcIzoAH3O7WrsOGuucrmDjXXftvj-_nFStVVAqW40m664K_q2TjWxtq6Hy28bHfWd8gOkNbIKtW1uvoDew0SH6Wjr73suVvtawtTHuNNT1ytZahz0XlTTGuyqegxMjXdQXf3UInu9un2bzZPF4_zCbLhJFOCIJZUIQrSqNlVQYk4qKnKWkyjLGNeGc0lyoVJcGZQLnoiwZ4yXH2FSUI8TydAiuDrpN8C87Hdti43ehtxkLkmWU4f5K1lOjA6WCjzFoU_SfbWXoCoyKfbxFH2_xG2_PTg7sq3W6-x8spsvlYeMHaaJ-TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446718024</pqid></control><display><type>article</type><title>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</title><source>Wiley Online Library All Journals</source><creator>Dubinenko, Gleb ; Zinoviev, Aleksey ; Bolbasov, Evgeny ; Kozelskaya, Anna ; Shesterikov, Evgeniy ; Novikov, Victor ; Tverdokhlebov, Sergei</creator><creatorcontrib>Dubinenko, Gleb ; Zinoviev, Aleksey ; Bolbasov, Evgeny ; Kozelskaya, Anna ; Shesterikov, Evgeniy ; Novikov, Victor ; Tverdokhlebov, Sergei</creatorcontrib><description>The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.49662</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>3-D printers ; Biodegradability ; biodegradable ; Biodegradable materials ; biomedical applications ; Biomedical materials ; Composite materials ; composites ; Crystal structure ; Crystallinity ; Crystallites ; extrusion ; Femur ; Fillers ; Homogeneity ; Hydroxyapatite ; Lactic acid ; Materials science ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Orthopedics ; Polylactic acid ; Polymer matrix composites ; Polymers ; Production methods ; Scaffolds ; thermoplastics ; Three dimensional composites ; Three dimensional printing ; Tibia ; Tissue engineering ; Weight</subject><ispartof>Journal of applied polymer science, 2021-01, Vol.138 (2), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</citedby><cites>FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</cites><orcidid>0000-0002-2242-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.49662$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.49662$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Dubinenko, Gleb</creatorcontrib><creatorcontrib>Zinoviev, Aleksey</creatorcontrib><creatorcontrib>Bolbasov, Evgeny</creatorcontrib><creatorcontrib>Kozelskaya, Anna</creatorcontrib><creatorcontrib>Shesterikov, Evgeniy</creatorcontrib><creatorcontrib>Novikov, Victor</creatorcontrib><creatorcontrib>Tverdokhlebov, Sergei</creatorcontrib><title>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</title><title>Journal of applied polymer science</title><description>The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.</description><subject>3-D printers</subject><subject>Biodegradability</subject><subject>biodegradable</subject><subject>Biodegradable materials</subject><subject>biomedical applications</subject><subject>Biomedical materials</subject><subject>Composite materials</subject><subject>composites</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>extrusion</subject><subject>Femur</subject><subject>Fillers</subject><subject>Homogeneity</subject><subject>Hydroxyapatite</subject><subject>Lactic acid</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Orthopedics</subject><subject>Polylactic acid</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Production methods</subject><subject>Scaffolds</subject><subject>thermoplastics</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tibia</subject><subject>Tissue engineering</subject><subject>Weight</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaW2NBFWttJ_LOsyk-RKtEFrCPHsVtXbhzsVBAWiCNwRk5CStmympHmmzdvHgCXGI0xQmQim2acCUrJERhgJFiSUcKPwaCf4YQLkZ-Csxg3CGGcIzoAH3O7WrsOGuucrmDjXXftvj-_nFStVVAqW40m664K_q2TjWxtq6Hy28bHfWd8gOkNbIKtW1uvoDew0SH6Wjr73suVvtawtTHuNNT1ytZahz0XlTTGuyqegxMjXdQXf3UInu9un2bzZPF4_zCbLhJFOCIJZUIQrSqNlVQYk4qKnKWkyjLGNeGc0lyoVJcGZQLnoiwZ4yXH2FSUI8TydAiuDrpN8C87Hdti43ehtxkLkmWU4f5K1lOjA6WCjzFoU_SfbWXoCoyKfbxFH2_xG2_PTg7sq3W6-x8spsvlYeMHaaJ-TA</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Dubinenko, Gleb</creator><creator>Zinoviev, Aleksey</creator><creator>Bolbasov, Evgeny</creator><creator>Kozelskaya, Anna</creator><creator>Shesterikov, Evgeniy</creator><creator>Novikov, Victor</creator><creator>Tverdokhlebov, Sergei</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2242-6358</orcidid></search><sort><creationdate>20210110</creationdate><title>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</title><author>Dubinenko, Gleb ; Zinoviev, Aleksey ; Bolbasov, Evgeny ; Kozelskaya, Anna ; Shesterikov, Evgeniy ; Novikov, Victor ; Tverdokhlebov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Biodegradability</topic><topic>biodegradable</topic><topic>Biodegradable materials</topic><topic>biomedical applications</topic><topic>Biomedical materials</topic><topic>Composite materials</topic><topic>composites</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>extrusion</topic><topic>Femur</topic><topic>Fillers</topic><topic>Homogeneity</topic><topic>Hydroxyapatite</topic><topic>Lactic acid</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Orthopedics</topic><topic>Polylactic acid</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Production methods</topic><topic>Scaffolds</topic><topic>thermoplastics</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tibia</topic><topic>Tissue engineering</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinenko, Gleb</creatorcontrib><creatorcontrib>Zinoviev, Aleksey</creatorcontrib><creatorcontrib>Bolbasov, Evgeny</creatorcontrib><creatorcontrib>Kozelskaya, Anna</creatorcontrib><creatorcontrib>Shesterikov, Evgeniy</creatorcontrib><creatorcontrib>Novikov, Victor</creatorcontrib><creatorcontrib>Tverdokhlebov, Sergei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinenko, Gleb</au><au>Zinoviev, Aleksey</au><au>Bolbasov, Evgeny</au><au>Kozelskaya, Anna</au><au>Shesterikov, Evgeniy</au><au>Novikov, Victor</au><au>Tverdokhlebov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</atitle><jtitle>Journal of applied polymer science</jtitle><date>2021-01-10</date><risdate>2021</risdate><volume>138</volume><issue>2</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.49662</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2242-6358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2021-01, Vol.138 (2), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2446718024 |
source | Wiley Online Library All Journals |
subjects | 3-D printers Biodegradability biodegradable Biodegradable materials biomedical applications Biomedical materials Composite materials composites Crystal structure Crystallinity Crystallites extrusion Femur Fillers Homogeneity Hydroxyapatite Lactic acid Materials science Mechanical properties Modulus of elasticity Nanoindentation Orthopedics Polylactic acid Polymer matrix composites Polymers Production methods Scaffolds thermoplastics Three dimensional composites Three dimensional printing Tibia Tissue engineering Weight |
title | Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20filled%20poly(l%E2%80%90lactic%20acid)/hydroxyapatite%20composite%20for%203D%20printing%20of%20personalized%20bone%20tissue%20engineering%20scaffolds&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Dubinenko,%20Gleb&rft.date=2021-01-10&rft.volume=138&rft.issue=2&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.49662&rft_dat=%3Cproquest_cross%3E2446718024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446718024&rft_id=info:pmid/&rfr_iscdi=true |