Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds

The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-01, Vol.138 (2), p.n/a
Hauptverfasser: Dubinenko, Gleb, Zinoviev, Aleksey, Bolbasov, Evgeny, Kozelskaya, Anna, Shesterikov, Evgeniy, Novikov, Victor, Tverdokhlebov, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Journal of applied polymer science
container_volume 138
creator Dubinenko, Gleb
Zinoviev, Aleksey
Bolbasov, Evgeny
Kozelskaya, Anna
Shesterikov, Evgeniy
Novikov, Victor
Tverdokhlebov, Sergei
description The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.
doi_str_mv 10.1002/app.49662
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446718024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446718024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqWw4AaW2NBFWttJ_LOsyk-RKtEFrCPHsVtXbhzsVBAWiCNwRk5CStmympHmmzdvHgCXGI0xQmQim2acCUrJERhgJFiSUcKPwaCf4YQLkZ-Csxg3CGGcIzoAH3O7WrsOGuucrmDjXXftvj-_nFStVVAqW40m664K_q2TjWxtq6Hy28bHfWd8gOkNbIKtW1uvoDew0SH6Wjr73suVvtawtTHuNNT1ytZahz0XlTTGuyqegxMjXdQXf3UInu9un2bzZPF4_zCbLhJFOCIJZUIQrSqNlVQYk4qKnKWkyjLGNeGc0lyoVJcGZQLnoiwZ4yXH2FSUI8TydAiuDrpN8C87Hdti43ehtxkLkmWU4f5K1lOjA6WCjzFoU_SfbWXoCoyKfbxFH2_xG2_PTg7sq3W6-x8spsvlYeMHaaJ-TA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446718024</pqid></control><display><type>article</type><title>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</title><source>Wiley Online Library All Journals</source><creator>Dubinenko, Gleb ; Zinoviev, Aleksey ; Bolbasov, Evgeny ; Kozelskaya, Anna ; Shesterikov, Evgeniy ; Novikov, Victor ; Tverdokhlebov, Sergei</creator><creatorcontrib>Dubinenko, Gleb ; Zinoviev, Aleksey ; Bolbasov, Evgeny ; Kozelskaya, Anna ; Shesterikov, Evgeniy ; Novikov, Victor ; Tverdokhlebov, Sergei</creatorcontrib><description>The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.49662</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; Biodegradability ; biodegradable ; Biodegradable materials ; biomedical applications ; Biomedical materials ; Composite materials ; composites ; Crystal structure ; Crystallinity ; Crystallites ; extrusion ; Femur ; Fillers ; Homogeneity ; Hydroxyapatite ; Lactic acid ; Materials science ; Mechanical properties ; Modulus of elasticity ; Nanoindentation ; Orthopedics ; Polylactic acid ; Polymer matrix composites ; Polymers ; Production methods ; Scaffolds ; thermoplastics ; Three dimensional composites ; Three dimensional printing ; Tibia ; Tissue engineering ; Weight</subject><ispartof>Journal of applied polymer science, 2021-01, Vol.138 (2), p.n/a</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</citedby><cites>FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</cites><orcidid>0000-0002-2242-6358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.49662$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.49662$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Dubinenko, Gleb</creatorcontrib><creatorcontrib>Zinoviev, Aleksey</creatorcontrib><creatorcontrib>Bolbasov, Evgeny</creatorcontrib><creatorcontrib>Kozelskaya, Anna</creatorcontrib><creatorcontrib>Shesterikov, Evgeniy</creatorcontrib><creatorcontrib>Novikov, Victor</creatorcontrib><creatorcontrib>Tverdokhlebov, Sergei</creatorcontrib><title>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</title><title>Journal of applied polymer science</title><description>The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.</description><subject>3-D printers</subject><subject>Biodegradability</subject><subject>biodegradable</subject><subject>Biodegradable materials</subject><subject>biomedical applications</subject><subject>Biomedical materials</subject><subject>Composite materials</subject><subject>composites</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallites</subject><subject>extrusion</subject><subject>Femur</subject><subject>Fillers</subject><subject>Homogeneity</subject><subject>Hydroxyapatite</subject><subject>Lactic acid</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Nanoindentation</subject><subject>Orthopedics</subject><subject>Polylactic acid</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Production methods</subject><subject>Scaffolds</subject><subject>thermoplastics</subject><subject>Three dimensional composites</subject><subject>Three dimensional printing</subject><subject>Tibia</subject><subject>Tissue engineering</subject><subject>Weight</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqWw4AaW2NBFWttJ_LOsyk-RKtEFrCPHsVtXbhzsVBAWiCNwRk5CStmympHmmzdvHgCXGI0xQmQim2acCUrJERhgJFiSUcKPwaCf4YQLkZ-Csxg3CGGcIzoAH3O7WrsOGuucrmDjXXftvj-_nFStVVAqW40m664K_q2TjWxtq6Hy28bHfWd8gOkNbIKtW1uvoDew0SH6Wjr73suVvtawtTHuNNT1ytZahz0XlTTGuyqegxMjXdQXf3UInu9un2bzZPF4_zCbLhJFOCIJZUIQrSqNlVQYk4qKnKWkyjLGNeGc0lyoVJcGZQLnoiwZ4yXH2FSUI8TydAiuDrpN8C87Hdti43ehtxkLkmWU4f5K1lOjA6WCjzFoU_SfbWXoCoyKfbxFH2_xG2_PTg7sq3W6-x8spsvlYeMHaaJ-TA</recordid><startdate>20210110</startdate><enddate>20210110</enddate><creator>Dubinenko, Gleb</creator><creator>Zinoviev, Aleksey</creator><creator>Bolbasov, Evgeny</creator><creator>Kozelskaya, Anna</creator><creator>Shesterikov, Evgeniy</creator><creator>Novikov, Victor</creator><creator>Tverdokhlebov, Sergei</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2242-6358</orcidid></search><sort><creationdate>20210110</creationdate><title>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</title><author>Dubinenko, Gleb ; Zinoviev, Aleksey ; Bolbasov, Evgeny ; Kozelskaya, Anna ; Shesterikov, Evgeniy ; Novikov, Victor ; Tverdokhlebov, Sergei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2802-67992ecde1cac112d695732d4478e2886659c3ebf049159bb778b811fd6800753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Biodegradability</topic><topic>biodegradable</topic><topic>Biodegradable materials</topic><topic>biomedical applications</topic><topic>Biomedical materials</topic><topic>Composite materials</topic><topic>composites</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallites</topic><topic>extrusion</topic><topic>Femur</topic><topic>Fillers</topic><topic>Homogeneity</topic><topic>Hydroxyapatite</topic><topic>Lactic acid</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Nanoindentation</topic><topic>Orthopedics</topic><topic>Polylactic acid</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Production methods</topic><topic>Scaffolds</topic><topic>thermoplastics</topic><topic>Three dimensional composites</topic><topic>Three dimensional printing</topic><topic>Tibia</topic><topic>Tissue engineering</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dubinenko, Gleb</creatorcontrib><creatorcontrib>Zinoviev, Aleksey</creatorcontrib><creatorcontrib>Bolbasov, Evgeny</creatorcontrib><creatorcontrib>Kozelskaya, Anna</creatorcontrib><creatorcontrib>Shesterikov, Evgeniy</creatorcontrib><creatorcontrib>Novikov, Victor</creatorcontrib><creatorcontrib>Tverdokhlebov, Sergei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dubinenko, Gleb</au><au>Zinoviev, Aleksey</au><au>Bolbasov, Evgeny</au><au>Kozelskaya, Anna</au><au>Shesterikov, Evgeniy</au><au>Novikov, Victor</au><au>Tverdokhlebov, Sergei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds</atitle><jtitle>Journal of applied polymer science</jtitle><date>2021-01-10</date><risdate>2021</risdate><volume>138</volume><issue>2</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>The designing of new biodegradable polymer composites is one of the most promising areas of modern orthopedics and regenerative surgery. At present, a number of methods have been proposed for designing and processing biodegradable polymer composites via various 3D printing technologies; however, the homogeneity of filler distribution together with mechanical properties of scaffolds made of such composites are far from those required for clinical use. In this study, the method for producing biodegradable composite material based on poly(l‐lactic acid) (PLLA) solution in organic solvent and hydroxyapatite (HAp) powder was proposed. The influence of HAp weight fraction and additional annealing on PLLA matrix crystallinity was investigated. It was shown that crystallinity of PLLA decreases from 58.84 ± 1.21 to 17.33 ± 1.69 as HAp weight fraction increased from 0 to 50 wt%. However, HAp filler promoted PLLA crystallites growth according to the X‐ray powder diffraction analysis. The results of nanoindentation showed Young's modulus values of the 3D‐printed scaffolds with 50 wt% of HAp at the level of human femur and tibia.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.49662</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2242-6358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2021-01, Vol.138 (2), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2446718024
source Wiley Online Library All Journals
subjects 3-D printers
Biodegradability
biodegradable
Biodegradable materials
biomedical applications
Biomedical materials
Composite materials
composites
Crystal structure
Crystallinity
Crystallites
extrusion
Femur
Fillers
Homogeneity
Hydroxyapatite
Lactic acid
Materials science
Mechanical properties
Modulus of elasticity
Nanoindentation
Orthopedics
Polylactic acid
Polymer matrix composites
Polymers
Production methods
Scaffolds
thermoplastics
Three dimensional composites
Three dimensional printing
Tibia
Tissue engineering
Weight
title Highly filled poly(l‐lactic acid)/hydroxyapatite composite for 3D printing of personalized bone tissue engineering scaffolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20filled%20poly(l%E2%80%90lactic%20acid)/hydroxyapatite%20composite%20for%203D%20printing%20of%20personalized%20bone%20tissue%20engineering%20scaffolds&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Dubinenko,%20Gleb&rft.date=2021-01-10&rft.volume=138&rft.issue=2&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.49662&rft_dat=%3Cproquest_cross%3E2446718024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446718024&rft_id=info:pmid/&rfr_iscdi=true