Methods and approaches to advance soil macroecology

Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to abo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global ecology and biogeography 2020-10, Vol.29 (10), p.1674-1690
Hauptverfasser: White, Hannah J., León‐Sánchez, Lupe, Burton, Victoria J., Cameron, Erin K., Caruso, Tancredi, Cunha, Luís, Dirilgen, Tara, Jurburg, Stephanie D., Kelly, Ruth, Kumaresan, Deepak, Ochoa‐Hueso, Raúl, Ordonez, Alejandro, Phillips, Helen R.P., Prieto, Iván, Schmidt, Olaf, Caplat, Paul, Schrodt, Franziska
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1690
container_issue 10
container_start_page 1674
container_title Global ecology and biogeography
container_volume 29
creator White, Hannah J.
León‐Sánchez, Lupe
Burton, Victoria J.
Cameron, Erin K.
Caruso, Tancredi
Cunha, Luís
Dirilgen, Tara
Jurburg, Stephanie D.
Kelly, Ruth
Kumaresan, Deepak
Ochoa‐Hueso, Raúl
Ordonez, Alejandro
Phillips, Helen R.P.
Prieto, Iván
Schmidt, Olaf
Caplat, Paul
Schrodt, Franziska
description Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to aboveground systems due to complexities of the soil system. We review the literature and identify key considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, interact with their environment at different spatial scales. Results The complexities of soil, including fine‐scale heterogeneity, 3‐D habitat structure, difficulties with taxonomic delimitation, and the wide‐ranging ecologies of its inhabitants, require the classical macroecological toolbox to be expanded to consider novel sampling, molecular identification, functional approaches, environmental variables, and modelling techniques. Main conclusions Soil provides a complex system within which to apply macroecological research, yet, it is this property that itself makes soil macroecology a field ripe for innovative methodologies and approaches. To achieve this, soil‐specific data, spatio‐temporal, biotic, and abiotic considerations are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole ecosystems and new approaches to link genes, functions and diversity across spatial and temporal scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is key to understanding the link between biodiversity and ecosystem functioning in terrestrial ecosystems.
doi_str_mv 10.1111/geb.13156
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446708627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446708627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3326-113c9a9f06c63b103d813cf2f14887fa294ba2425e263e194aa2de60fa2f4c563</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmNw4B9E4sShW76apkeYtoE0xAUkbpGbJlunrilNB-q_J1DEDV9s2Y_tVy9C15TMaIz51hYzymkqT9CECikTxbg6_avZ2zm6CGFPCElFKieIP9l-58uAoSkxtG3nwexswL3HUH5AYywOvqrxAUznrfG13w6X6MxBHezVb56i19XyZfGQbJ7Xj4u7TWI4ZzKhlJscckekkbyghJcqdhxzVCiVOWC5KIAJllomuaW5AGCllSROnDCp5FN0M96Nqt6PNvR6749dE19qJoTMiJIsi9TtSEWBIXTW6barDtANmhL97YmOnugfTyI7H9nPqrbD_6BeL-_HjS8uw2Ex</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446708627</pqid></control><display><type>article</type><title>Methods and approaches to advance soil macroecology</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>White, Hannah J. ; León‐Sánchez, Lupe ; Burton, Victoria J. ; Cameron, Erin K. ; Caruso, Tancredi ; Cunha, Luís ; Dirilgen, Tara ; Jurburg, Stephanie D. ; Kelly, Ruth ; Kumaresan, Deepak ; Ochoa‐Hueso, Raúl ; Ordonez, Alejandro ; Phillips, Helen R.P. ; Prieto, Iván ; Schmidt, Olaf ; Caplat, Paul ; Schrodt, Franziska</creator><contributor>Schrodt, Franziska</contributor><creatorcontrib>White, Hannah J. ; León‐Sánchez, Lupe ; Burton, Victoria J. ; Cameron, Erin K. ; Caruso, Tancredi ; Cunha, Luís ; Dirilgen, Tara ; Jurburg, Stephanie D. ; Kelly, Ruth ; Kumaresan, Deepak ; Ochoa‐Hueso, Raúl ; Ordonez, Alejandro ; Phillips, Helen R.P. ; Prieto, Iván ; Schmidt, Olaf ; Caplat, Paul ; Schrodt, Franziska ; Schrodt, Franziska</creatorcontrib><description>Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to aboveground systems due to complexities of the soil system. We review the literature and identify key considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, interact with their environment at different spatial scales. Results The complexities of soil, including fine‐scale heterogeneity, 3‐D habitat structure, difficulties with taxonomic delimitation, and the wide‐ranging ecologies of its inhabitants, require the classical macroecological toolbox to be expanded to consider novel sampling, molecular identification, functional approaches, environmental variables, and modelling techniques. Main conclusions Soil provides a complex system within which to apply macroecological research, yet, it is this property that itself makes soil macroecology a field ripe for innovative methodologies and approaches. To achieve this, soil‐specific data, spatio‐temporal, biotic, and abiotic considerations are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole ecosystems and new approaches to link genes, functions and diversity across spatial and temporal scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is key to understanding the link between biodiversity and ecosystem functioning in terrestrial ecosystems.</description><identifier>ISSN: 1466-822X</identifier><identifier>EISSN: 1466-8238</identifier><identifier>DOI: 10.1111/geb.13156</identifier><language>eng</language><publisher>Oxford: Wiley Subscription Services, Inc</publisher><subject>Aquatic ecology ; Bacteria ; belowground ; Biodiversity ; Biota ; Complex systems ; distribution ; Environment models ; Fungi ; Gene mapping ; Heterogeneity ; Literature reviews ; Macroecology ; Sampling ; Sampling designs ; soil ; Soil bacteria ; Soil investigations ; Soil maps ; Soil microorganisms ; Soil properties ; Soils ; spatial scale ; Statistical analysis ; Taxa ; Terrestrial ecosystems ; Terrestrial environments</subject><ispartof>Global ecology and biogeography, 2020-10, Vol.29 (10), p.1674-1690</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3326-113c9a9f06c63b103d813cf2f14887fa294ba2425e263e194aa2de60fa2f4c563</citedby><cites>FETCH-LOGICAL-c3326-113c9a9f06c63b103d813cf2f14887fa294ba2425e263e194aa2de60fa2f4c563</cites><orcidid>0000-0001-7982-5993 ; 0000-0003-0098-7960 ; 0000-0002-5870-2537 ; 0000-0002-6793-8613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgeb.13156$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgeb.13156$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><contributor>Schrodt, Franziska</contributor><creatorcontrib>White, Hannah J.</creatorcontrib><creatorcontrib>León‐Sánchez, Lupe</creatorcontrib><creatorcontrib>Burton, Victoria J.</creatorcontrib><creatorcontrib>Cameron, Erin K.</creatorcontrib><creatorcontrib>Caruso, Tancredi</creatorcontrib><creatorcontrib>Cunha, Luís</creatorcontrib><creatorcontrib>Dirilgen, Tara</creatorcontrib><creatorcontrib>Jurburg, Stephanie D.</creatorcontrib><creatorcontrib>Kelly, Ruth</creatorcontrib><creatorcontrib>Kumaresan, Deepak</creatorcontrib><creatorcontrib>Ochoa‐Hueso, Raúl</creatorcontrib><creatorcontrib>Ordonez, Alejandro</creatorcontrib><creatorcontrib>Phillips, Helen R.P.</creatorcontrib><creatorcontrib>Prieto, Iván</creatorcontrib><creatorcontrib>Schmidt, Olaf</creatorcontrib><creatorcontrib>Caplat, Paul</creatorcontrib><creatorcontrib>Schrodt, Franziska</creatorcontrib><title>Methods and approaches to advance soil macroecology</title><title>Global ecology and biogeography</title><description>Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to aboveground systems due to complexities of the soil system. We review the literature and identify key considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, interact with their environment at different spatial scales. Results The complexities of soil, including fine‐scale heterogeneity, 3‐D habitat structure, difficulties with taxonomic delimitation, and the wide‐ranging ecologies of its inhabitants, require the classical macroecological toolbox to be expanded to consider novel sampling, molecular identification, functional approaches, environmental variables, and modelling techniques. Main conclusions Soil provides a complex system within which to apply macroecological research, yet, it is this property that itself makes soil macroecology a field ripe for innovative methodologies and approaches. To achieve this, soil‐specific data, spatio‐temporal, biotic, and abiotic considerations are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole ecosystems and new approaches to link genes, functions and diversity across spatial and temporal scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is key to understanding the link between biodiversity and ecosystem functioning in terrestrial ecosystems.</description><subject>Aquatic ecology</subject><subject>Bacteria</subject><subject>belowground</subject><subject>Biodiversity</subject><subject>Biota</subject><subject>Complex systems</subject><subject>distribution</subject><subject>Environment models</subject><subject>Fungi</subject><subject>Gene mapping</subject><subject>Heterogeneity</subject><subject>Literature reviews</subject><subject>Macroecology</subject><subject>Sampling</subject><subject>Sampling designs</subject><subject>soil</subject><subject>Soil bacteria</subject><subject>Soil investigations</subject><subject>Soil maps</subject><subject>Soil microorganisms</subject><subject>Soil properties</subject><subject>Soils</subject><subject>spatial scale</subject><subject>Statistical analysis</subject><subject>Taxa</subject><subject>Terrestrial ecosystems</subject><subject>Terrestrial environments</subject><issn>1466-822X</issn><issn>1466-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmNw4B9E4sShW76apkeYtoE0xAUkbpGbJlunrilNB-q_J1DEDV9s2Y_tVy9C15TMaIz51hYzymkqT9CECikTxbg6_avZ2zm6CGFPCElFKieIP9l-58uAoSkxtG3nwexswL3HUH5AYywOvqrxAUznrfG13w6X6MxBHezVb56i19XyZfGQbJ7Xj4u7TWI4ZzKhlJscckekkbyghJcqdhxzVCiVOWC5KIAJllomuaW5AGCllSROnDCp5FN0M96Nqt6PNvR6749dE19qJoTMiJIsi9TtSEWBIXTW6barDtANmhL97YmOnugfTyI7H9nPqrbD_6BeL-_HjS8uw2Ex</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>White, Hannah J.</creator><creator>León‐Sánchez, Lupe</creator><creator>Burton, Victoria J.</creator><creator>Cameron, Erin K.</creator><creator>Caruso, Tancredi</creator><creator>Cunha, Luís</creator><creator>Dirilgen, Tara</creator><creator>Jurburg, Stephanie D.</creator><creator>Kelly, Ruth</creator><creator>Kumaresan, Deepak</creator><creator>Ochoa‐Hueso, Raúl</creator><creator>Ordonez, Alejandro</creator><creator>Phillips, Helen R.P.</creator><creator>Prieto, Iván</creator><creator>Schmidt, Olaf</creator><creator>Caplat, Paul</creator><creator>Schrodt, Franziska</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0001-7982-5993</orcidid><orcidid>https://orcid.org/0000-0003-0098-7960</orcidid><orcidid>https://orcid.org/0000-0002-5870-2537</orcidid><orcidid>https://orcid.org/0000-0002-6793-8613</orcidid></search><sort><creationdate>202010</creationdate><title>Methods and approaches to advance soil macroecology</title><author>White, Hannah J. ; León‐Sánchez, Lupe ; Burton, Victoria J. ; Cameron, Erin K. ; Caruso, Tancredi ; Cunha, Luís ; Dirilgen, Tara ; Jurburg, Stephanie D. ; Kelly, Ruth ; Kumaresan, Deepak ; Ochoa‐Hueso, Raúl ; Ordonez, Alejandro ; Phillips, Helen R.P. ; Prieto, Iván ; Schmidt, Olaf ; Caplat, Paul ; Schrodt, Franziska</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3326-113c9a9f06c63b103d813cf2f14887fa294ba2425e263e194aa2de60fa2f4c563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aquatic ecology</topic><topic>Bacteria</topic><topic>belowground</topic><topic>Biodiversity</topic><topic>Biota</topic><topic>Complex systems</topic><topic>distribution</topic><topic>Environment models</topic><topic>Fungi</topic><topic>Gene mapping</topic><topic>Heterogeneity</topic><topic>Literature reviews</topic><topic>Macroecology</topic><topic>Sampling</topic><topic>Sampling designs</topic><topic>soil</topic><topic>Soil bacteria</topic><topic>Soil investigations</topic><topic>Soil maps</topic><topic>Soil microorganisms</topic><topic>Soil properties</topic><topic>Soils</topic><topic>spatial scale</topic><topic>Statistical analysis</topic><topic>Taxa</topic><topic>Terrestrial ecosystems</topic><topic>Terrestrial environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Hannah J.</creatorcontrib><creatorcontrib>León‐Sánchez, Lupe</creatorcontrib><creatorcontrib>Burton, Victoria J.</creatorcontrib><creatorcontrib>Cameron, Erin K.</creatorcontrib><creatorcontrib>Caruso, Tancredi</creatorcontrib><creatorcontrib>Cunha, Luís</creatorcontrib><creatorcontrib>Dirilgen, Tara</creatorcontrib><creatorcontrib>Jurburg, Stephanie D.</creatorcontrib><creatorcontrib>Kelly, Ruth</creatorcontrib><creatorcontrib>Kumaresan, Deepak</creatorcontrib><creatorcontrib>Ochoa‐Hueso, Raúl</creatorcontrib><creatorcontrib>Ordonez, Alejandro</creatorcontrib><creatorcontrib>Phillips, Helen R.P.</creatorcontrib><creatorcontrib>Prieto, Iván</creatorcontrib><creatorcontrib>Schmidt, Olaf</creatorcontrib><creatorcontrib>Caplat, Paul</creatorcontrib><creatorcontrib>Schrodt, Franziska</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Global ecology and biogeography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Hannah J.</au><au>León‐Sánchez, Lupe</au><au>Burton, Victoria J.</au><au>Cameron, Erin K.</au><au>Caruso, Tancredi</au><au>Cunha, Luís</au><au>Dirilgen, Tara</au><au>Jurburg, Stephanie D.</au><au>Kelly, Ruth</au><au>Kumaresan, Deepak</au><au>Ochoa‐Hueso, Raúl</au><au>Ordonez, Alejandro</au><au>Phillips, Helen R.P.</au><au>Prieto, Iván</au><au>Schmidt, Olaf</au><au>Caplat, Paul</au><au>Schrodt, Franziska</au><au>Schrodt, Franziska</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Methods and approaches to advance soil macroecology</atitle><jtitle>Global ecology and biogeography</jtitle><date>2020-10</date><risdate>2020</risdate><volume>29</volume><issue>10</issue><spage>1674</spage><epage>1690</epage><pages>1674-1690</pages><issn>1466-822X</issn><eissn>1466-8238</eissn><abstract>Motivation and aim Soil biodiversity is central to ecosystem function and services. It represents most of terrestrial biodiversity and at least a quarter of all biodiversity on Earth. Yet, research into broad, generalizable spatial and temporal patterns of soil biota has been limited compared to aboveground systems due to complexities of the soil system. We review the literature and identify key considerations necessary to expand soil macroecology beyond the recent surge of global maps of soil taxa, so that we can gain greater insight into the mechanisms and processes shaping soil biodiversity. We focus primarily on three groups of soil taxa (earthworms, mycorrhizal fungi and soil bacteria) that represent a range of body sizes and ecologies, and, therefore, interact with their environment at different spatial scales. Results The complexities of soil, including fine‐scale heterogeneity, 3‐D habitat structure, difficulties with taxonomic delimitation, and the wide‐ranging ecologies of its inhabitants, require the classical macroecological toolbox to be expanded to consider novel sampling, molecular identification, functional approaches, environmental variables, and modelling techniques. Main conclusions Soil provides a complex system within which to apply macroecological research, yet, it is this property that itself makes soil macroecology a field ripe for innovative methodologies and approaches. To achieve this, soil‐specific data, spatio‐temporal, biotic, and abiotic considerations are necessary at all stages of research, from sampling design to statistical analyses. Insights into whole ecosystems and new approaches to link genes, functions and diversity across spatial and temporal scales, alongside methodologies already applied in aboveground macroecology, invasion ecology and aquatic ecology, will facilitate the investigation of macroecological processes in soil biota, which is key to understanding the link between biodiversity and ecosystem functioning in terrestrial ecosystems.</abstract><cop>Oxford</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/geb.13156</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7982-5993</orcidid><orcidid>https://orcid.org/0000-0003-0098-7960</orcidid><orcidid>https://orcid.org/0000-0002-5870-2537</orcidid><orcidid>https://orcid.org/0000-0002-6793-8613</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1466-822X
ispartof Global ecology and biogeography, 2020-10, Vol.29 (10), p.1674-1690
issn 1466-822X
1466-8238
language eng
recordid cdi_proquest_journals_2446708627
source Wiley Online Library Journals Frontfile Complete
subjects Aquatic ecology
Bacteria
belowground
Biodiversity
Biota
Complex systems
distribution
Environment models
Fungi
Gene mapping
Heterogeneity
Literature reviews
Macroecology
Sampling
Sampling designs
soil
Soil bacteria
Soil investigations
Soil maps
Soil microorganisms
Soil properties
Soils
spatial scale
Statistical analysis
Taxa
Terrestrial ecosystems
Terrestrial environments
title Methods and approaches to advance soil macroecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A33%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Methods%20and%20approaches%20to%20advance%20soil%20macroecology&rft.jtitle=Global%20ecology%20and%20biogeography&rft.au=White,%20Hannah%20J.&rft.date=2020-10&rft.volume=29&rft.issue=10&rft.spage=1674&rft.epage=1690&rft.pages=1674-1690&rft.issn=1466-822X&rft.eissn=1466-8238&rft_id=info:doi/10.1111/geb.13156&rft_dat=%3Cproquest_cross%3E2446708627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446708627&rft_id=info:pmid/&rfr_iscdi=true