Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems

Deep ocean microorganisms consume particulate organic matter that is produced in the surface ocean and exported to deeper depths. Such consumption not only enriches inorganic carbon in the deep ocean but also transforms organic carbon into recalcitrant forms, creating an alternative type of carbon s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2020-09, Vol.47 (18), p.n/a
Hauptverfasser: Shen, Jiaming, Jiao, Nianzhi, Dai, Minhan, Wang, Haili, Qiu, Guoqiang, Chen, Jianfang, Li, Hongliang, Kao, Shuh‐Ji, Yang, Jin‐Yu Terence, Cai, Pinghe, Zhou, Kuanbo, Yang, Weifeng, Zhu, Yifan, Liu, Zhiyu, Chen, Mingming, Zuo, Zuhui, Gaye, Birgit, Wiesner, Martin G., Zhang, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Geophysical research letters
container_volume 47
creator Shen, Jiaming
Jiao, Nianzhi
Dai, Minhan
Wang, Haili
Qiu, Guoqiang
Chen, Jianfang
Li, Hongliang
Kao, Shuh‐Ji
Yang, Jin‐Yu Terence
Cai, Pinghe
Zhou, Kuanbo
Yang, Weifeng
Zhu, Yifan
Liu, Zhiyu
Chen, Mingming
Zuo, Zuhui
Gaye, Birgit
Wiesner, Martin G.
Zhang, Yao
description Deep ocean microorganisms consume particulate organic matter that is produced in the surface ocean and exported to deeper depths. Such consumption not only enriches inorganic carbon in the deep ocean but also transforms organic carbon into recalcitrant forms, creating an alternative type of carbon sequestration. However, estimates of deep microbial carbon demand substantially exceed the available particulate organic carbon exported from the euphotic zone, resulting in an unbalanced dark ocean carbon budget. Here, we combined field‐based microbial activity parameters, integrated multiyear particle export flux data, sinking particle fluxes measured by sediment traps, and optical data from Biogeochemical‐Argo floats to quantify the main sources of organic carbon to the dark ocean. Laterally transported particles (including sinking and suspended particles) serve as a major energy source, which directly provide organic carbon and enhance new organic carbon production by dark carbon fixation, reconciling the mismatch in the regional carbon budget. Plain Language Summary Particulate organic matter, produced by phytoplankton in the upper ocean, can sink through the water column and act as a source of organic matter to the deep ocean. These particles are decomposed to carbon dioxide by microorganisms, resulting in dissolved inorganic carbon and organic carbon resistant to decomposition in the deeper ocean. This process controls the biological sequestration of CO2 by the oceans. However, there is an imbalance between the low amount of organic carbon exported from the photic zone and the high microbial demand for carbon in the dark ocean. We attempted to explain how the deep ocean carbon and energy supply can meet the microbial metabolic demand. Four main organic carbon sources were measured and quantified in the South China Sea: particles that come from the photic zone, particles that move laterally through the ocean, dark carbon fixation, and dissolved organic carbon. We found that laterally transported particles from the surrounding margins provide a direct source of organic carbon and also allow for much new organic carbon production through dark carbon fixation. These particles, which provide a major energy source to dark ocean ecosystems, help resolve the mismatch in the regional carbon budget. Key Points Data from Biogeochemical‐Argo floats showed direct evidence of episodic pulses of laterally transported particles into the deep sea Laterally transported part
doi_str_mv 10.1029/2020GL088971
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446324698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2446324698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4109-595b35ffd670bb3dbdcc77dee14ef5b69f99049f8b40e7988c2130e46646cf8f3</originalsourceid><addsrcrecordid>eNp9kMFOwzAQRC0EEqVw4wMscSWwTlzHPqLSFqSgIlrOkeOsUUuahHUKyt8TVA6cOO1q52lnNIxdCrgREJvbGGJYZKC1ScURGwkjZaQB0mM2AjDDHqfqlJ2FsAWABBIxYm1mOyRbVT1fk61D21CHJX-21G1chYHPqdnxJ0tvmzrwFdInchu4HU7bhvjUUtHU3NYln9VIbz1fNXtyyP0g3lt650uHtuYz14Q-dLgL5-zE2yrgxe8cs9f5bD19iLLl4nF6l0VOCjDRxEyKZOJ9qVIoiqQsSufStEQUEv2kUMYbA9J4XUjA1GjtYpEASqWkcl77ZMyuDn9baj72GLp8OySrB8s8llIlsVRGD9T1gXLUhEDo85Y2O0t9LiD_6TT_2-mAxwf8a1Nh_y-bL14yJYQ2yTdTb3gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446324698</pqid></control><display><type>article</type><title>Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Shen, Jiaming ; Jiao, Nianzhi ; Dai, Minhan ; Wang, Haili ; Qiu, Guoqiang ; Chen, Jianfang ; Li, Hongliang ; Kao, Shuh‐Ji ; Yang, Jin‐Yu Terence ; Cai, Pinghe ; Zhou, Kuanbo ; Yang, Weifeng ; Zhu, Yifan ; Liu, Zhiyu ; Chen, Mingming ; Zuo, Zuhui ; Gaye, Birgit ; Wiesner, Martin G. ; Zhang, Yao</creator><creatorcontrib>Shen, Jiaming ; Jiao, Nianzhi ; Dai, Minhan ; Wang, Haili ; Qiu, Guoqiang ; Chen, Jianfang ; Li, Hongliang ; Kao, Shuh‐Ji ; Yang, Jin‐Yu Terence ; Cai, Pinghe ; Zhou, Kuanbo ; Yang, Weifeng ; Zhu, Yifan ; Liu, Zhiyu ; Chen, Mingming ; Zuo, Zuhui ; Gaye, Birgit ; Wiesner, Martin G. ; Zhang, Yao</creatorcontrib><description>Deep ocean microorganisms consume particulate organic matter that is produced in the surface ocean and exported to deeper depths. Such consumption not only enriches inorganic carbon in the deep ocean but also transforms organic carbon into recalcitrant forms, creating an alternative type of carbon sequestration. However, estimates of deep microbial carbon demand substantially exceed the available particulate organic carbon exported from the euphotic zone, resulting in an unbalanced dark ocean carbon budget. Here, we combined field‐based microbial activity parameters, integrated multiyear particle export flux data, sinking particle fluxes measured by sediment traps, and optical data from Biogeochemical‐Argo floats to quantify the main sources of organic carbon to the dark ocean. Laterally transported particles (including sinking and suspended particles) serve as a major energy source, which directly provide organic carbon and enhance new organic carbon production by dark carbon fixation, reconciling the mismatch in the regional carbon budget. Plain Language Summary Particulate organic matter, produced by phytoplankton in the upper ocean, can sink through the water column and act as a source of organic matter to the deep ocean. These particles are decomposed to carbon dioxide by microorganisms, resulting in dissolved inorganic carbon and organic carbon resistant to decomposition in the deeper ocean. This process controls the biological sequestration of CO2 by the oceans. However, there is an imbalance between the low amount of organic carbon exported from the photic zone and the high microbial demand for carbon in the dark ocean. We attempted to explain how the deep ocean carbon and energy supply can meet the microbial metabolic demand. Four main organic carbon sources were measured and quantified in the South China Sea: particles that come from the photic zone, particles that move laterally through the ocean, dark carbon fixation, and dissolved organic carbon. We found that laterally transported particles from the surrounding margins provide a direct source of organic carbon and also allow for much new organic carbon production through dark carbon fixation. These particles, which provide a major energy source to dark ocean ecosystems, help resolve the mismatch in the regional carbon budget. Key Points Data from Biogeochemical‐Argo floats showed direct evidence of episodic pulses of laterally transported particles into the deep sea Laterally transported particles are a direct organic carbon source and also enhance new organic carbon production by dark carbon fixation Laterally transported particles provide major carbon and energy for deep ecosystems, reconciling the mismatch in the regional carbon budget</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL088971</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Biogeochemistry ; Biological activity ; Carbon ; carbon and energy source ; Carbon budget ; Carbon dioxide ; Carbon fixation ; Carbon sequestration ; Carbon sources ; dark ocean ecosystem ; Decomposition ; Demand ; Dissolved inorganic carbon ; Dissolved organic carbon ; Drifters ; Ecosystems ; Energy ; Energy sources ; Euphotic zone ; Exports ; Floats ; Fluxes ; lateral particle transport ; Marine ecosystems ; Microbial activity ; microbial carbon demand ; Microorganisms ; Oceans ; Organic carbon ; Organic matter ; Particle settling ; Particulate flux ; Particulate organic carbon ; Particulate organic matter ; Phytoplankton ; Process control ; Process controls ; Sediment traps ; Sinking ; sinking POC flux ; Upper ocean ; Water circulation ; Water column</subject><ispartof>Geophysical research letters, 2020-09, Vol.47 (18), p.n/a</ispartof><rights>2020 The Authors.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4109-595b35ffd670bb3dbdcc77dee14ef5b69f99049f8b40e7988c2130e46646cf8f3</citedby><cites>FETCH-LOGICAL-c4109-595b35ffd670bb3dbdcc77dee14ef5b69f99049f8b40e7988c2130e46646cf8f3</cites><orcidid>0000-0003-0550-0701 ; 0000-0002-5054-9099 ; 0000-0002-6356-6744 ; 0000-0003-2408-7422 ; 0000-0002-2225-1746 ; 0000-0002-9339-1746 ; 0000-0003-4310-1760 ; 0000-0003-1211-4745 ; 0000-0002-6521-0266 ; 0000-0003-2066-0375 ; 0000-0001-5293-1390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL088971$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL088971$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Shen, Jiaming</creatorcontrib><creatorcontrib>Jiao, Nianzhi</creatorcontrib><creatorcontrib>Dai, Minhan</creatorcontrib><creatorcontrib>Wang, Haili</creatorcontrib><creatorcontrib>Qiu, Guoqiang</creatorcontrib><creatorcontrib>Chen, Jianfang</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Kao, Shuh‐Ji</creatorcontrib><creatorcontrib>Yang, Jin‐Yu Terence</creatorcontrib><creatorcontrib>Cai, Pinghe</creatorcontrib><creatorcontrib>Zhou, Kuanbo</creatorcontrib><creatorcontrib>Yang, Weifeng</creatorcontrib><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Liu, Zhiyu</creatorcontrib><creatorcontrib>Chen, Mingming</creatorcontrib><creatorcontrib>Zuo, Zuhui</creatorcontrib><creatorcontrib>Gaye, Birgit</creatorcontrib><creatorcontrib>Wiesner, Martin G.</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><title>Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems</title><title>Geophysical research letters</title><description>Deep ocean microorganisms consume particulate organic matter that is produced in the surface ocean and exported to deeper depths. Such consumption not only enriches inorganic carbon in the deep ocean but also transforms organic carbon into recalcitrant forms, creating an alternative type of carbon sequestration. However, estimates of deep microbial carbon demand substantially exceed the available particulate organic carbon exported from the euphotic zone, resulting in an unbalanced dark ocean carbon budget. Here, we combined field‐based microbial activity parameters, integrated multiyear particle export flux data, sinking particle fluxes measured by sediment traps, and optical data from Biogeochemical‐Argo floats to quantify the main sources of organic carbon to the dark ocean. Laterally transported particles (including sinking and suspended particles) serve as a major energy source, which directly provide organic carbon and enhance new organic carbon production by dark carbon fixation, reconciling the mismatch in the regional carbon budget. Plain Language Summary Particulate organic matter, produced by phytoplankton in the upper ocean, can sink through the water column and act as a source of organic matter to the deep ocean. These particles are decomposed to carbon dioxide by microorganisms, resulting in dissolved inorganic carbon and organic carbon resistant to decomposition in the deeper ocean. This process controls the biological sequestration of CO2 by the oceans. However, there is an imbalance between the low amount of organic carbon exported from the photic zone and the high microbial demand for carbon in the dark ocean. We attempted to explain how the deep ocean carbon and energy supply can meet the microbial metabolic demand. Four main organic carbon sources were measured and quantified in the South China Sea: particles that come from the photic zone, particles that move laterally through the ocean, dark carbon fixation, and dissolved organic carbon. We found that laterally transported particles from the surrounding margins provide a direct source of organic carbon and also allow for much new organic carbon production through dark carbon fixation. These particles, which provide a major energy source to dark ocean ecosystems, help resolve the mismatch in the regional carbon budget. Key Points Data from Biogeochemical‐Argo floats showed direct evidence of episodic pulses of laterally transported particles into the deep sea Laterally transported particles are a direct organic carbon source and also enhance new organic carbon production by dark carbon fixation Laterally transported particles provide major carbon and energy for deep ecosystems, reconciling the mismatch in the regional carbon budget</description><subject>Biogeochemistry</subject><subject>Biological activity</subject><subject>Carbon</subject><subject>carbon and energy source</subject><subject>Carbon budget</subject><subject>Carbon dioxide</subject><subject>Carbon fixation</subject><subject>Carbon sequestration</subject><subject>Carbon sources</subject><subject>dark ocean ecosystem</subject><subject>Decomposition</subject><subject>Demand</subject><subject>Dissolved inorganic carbon</subject><subject>Dissolved organic carbon</subject><subject>Drifters</subject><subject>Ecosystems</subject><subject>Energy</subject><subject>Energy sources</subject><subject>Euphotic zone</subject><subject>Exports</subject><subject>Floats</subject><subject>Fluxes</subject><subject>lateral particle transport</subject><subject>Marine ecosystems</subject><subject>Microbial activity</subject><subject>microbial carbon demand</subject><subject>Microorganisms</subject><subject>Oceans</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Particle settling</subject><subject>Particulate flux</subject><subject>Particulate organic carbon</subject><subject>Particulate organic matter</subject><subject>Phytoplankton</subject><subject>Process control</subject><subject>Process controls</subject><subject>Sediment traps</subject><subject>Sinking</subject><subject>sinking POC flux</subject><subject>Upper ocean</subject><subject>Water circulation</subject><subject>Water column</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kMFOwzAQRC0EEqVw4wMscSWwTlzHPqLSFqSgIlrOkeOsUUuahHUKyt8TVA6cOO1q52lnNIxdCrgREJvbGGJYZKC1ScURGwkjZaQB0mM2AjDDHqfqlJ2FsAWABBIxYm1mOyRbVT1fk61D21CHJX-21G1chYHPqdnxJ0tvmzrwFdInchu4HU7bhvjUUtHU3NYln9VIbz1fNXtyyP0g3lt650uHtuYz14Q-dLgL5-zE2yrgxe8cs9f5bD19iLLl4nF6l0VOCjDRxEyKZOJ9qVIoiqQsSufStEQUEv2kUMYbA9J4XUjA1GjtYpEASqWkcl77ZMyuDn9baj72GLp8OySrB8s8llIlsVRGD9T1gXLUhEDo85Y2O0t9LiD_6TT_2-mAxwf8a1Nh_y-bL14yJYQ2yTdTb3gA</recordid><startdate>20200928</startdate><enddate>20200928</enddate><creator>Shen, Jiaming</creator><creator>Jiao, Nianzhi</creator><creator>Dai, Minhan</creator><creator>Wang, Haili</creator><creator>Qiu, Guoqiang</creator><creator>Chen, Jianfang</creator><creator>Li, Hongliang</creator><creator>Kao, Shuh‐Ji</creator><creator>Yang, Jin‐Yu Terence</creator><creator>Cai, Pinghe</creator><creator>Zhou, Kuanbo</creator><creator>Yang, Weifeng</creator><creator>Zhu, Yifan</creator><creator>Liu, Zhiyu</creator><creator>Chen, Mingming</creator><creator>Zuo, Zuhui</creator><creator>Gaye, Birgit</creator><creator>Wiesner, Martin G.</creator><creator>Zhang, Yao</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0550-0701</orcidid><orcidid>https://orcid.org/0000-0002-5054-9099</orcidid><orcidid>https://orcid.org/0000-0002-6356-6744</orcidid><orcidid>https://orcid.org/0000-0003-2408-7422</orcidid><orcidid>https://orcid.org/0000-0002-2225-1746</orcidid><orcidid>https://orcid.org/0000-0002-9339-1746</orcidid><orcidid>https://orcid.org/0000-0003-4310-1760</orcidid><orcidid>https://orcid.org/0000-0003-1211-4745</orcidid><orcidid>https://orcid.org/0000-0002-6521-0266</orcidid><orcidid>https://orcid.org/0000-0003-2066-0375</orcidid><orcidid>https://orcid.org/0000-0001-5293-1390</orcidid></search><sort><creationdate>20200928</creationdate><title>Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems</title><author>Shen, Jiaming ; Jiao, Nianzhi ; Dai, Minhan ; Wang, Haili ; Qiu, Guoqiang ; Chen, Jianfang ; Li, Hongliang ; Kao, Shuh‐Ji ; Yang, Jin‐Yu Terence ; Cai, Pinghe ; Zhou, Kuanbo ; Yang, Weifeng ; Zhu, Yifan ; Liu, Zhiyu ; Chen, Mingming ; Zuo, Zuhui ; Gaye, Birgit ; Wiesner, Martin G. ; Zhang, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4109-595b35ffd670bb3dbdcc77dee14ef5b69f99049f8b40e7988c2130e46646cf8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biogeochemistry</topic><topic>Biological activity</topic><topic>Carbon</topic><topic>carbon and energy source</topic><topic>Carbon budget</topic><topic>Carbon dioxide</topic><topic>Carbon fixation</topic><topic>Carbon sequestration</topic><topic>Carbon sources</topic><topic>dark ocean ecosystem</topic><topic>Decomposition</topic><topic>Demand</topic><topic>Dissolved inorganic carbon</topic><topic>Dissolved organic carbon</topic><topic>Drifters</topic><topic>Ecosystems</topic><topic>Energy</topic><topic>Energy sources</topic><topic>Euphotic zone</topic><topic>Exports</topic><topic>Floats</topic><topic>Fluxes</topic><topic>lateral particle transport</topic><topic>Marine ecosystems</topic><topic>Microbial activity</topic><topic>microbial carbon demand</topic><topic>Microorganisms</topic><topic>Oceans</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Particle settling</topic><topic>Particulate flux</topic><topic>Particulate organic carbon</topic><topic>Particulate organic matter</topic><topic>Phytoplankton</topic><topic>Process control</topic><topic>Process controls</topic><topic>Sediment traps</topic><topic>Sinking</topic><topic>sinking POC flux</topic><topic>Upper ocean</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jiaming</creatorcontrib><creatorcontrib>Jiao, Nianzhi</creatorcontrib><creatorcontrib>Dai, Minhan</creatorcontrib><creatorcontrib>Wang, Haili</creatorcontrib><creatorcontrib>Qiu, Guoqiang</creatorcontrib><creatorcontrib>Chen, Jianfang</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Kao, Shuh‐Ji</creatorcontrib><creatorcontrib>Yang, Jin‐Yu Terence</creatorcontrib><creatorcontrib>Cai, Pinghe</creatorcontrib><creatorcontrib>Zhou, Kuanbo</creatorcontrib><creatorcontrib>Yang, Weifeng</creatorcontrib><creatorcontrib>Zhu, Yifan</creatorcontrib><creatorcontrib>Liu, Zhiyu</creatorcontrib><creatorcontrib>Chen, Mingming</creatorcontrib><creatorcontrib>Zuo, Zuhui</creatorcontrib><creatorcontrib>Gaye, Birgit</creatorcontrib><creatorcontrib>Wiesner, Martin G.</creatorcontrib><creatorcontrib>Zhang, Yao</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jiaming</au><au>Jiao, Nianzhi</au><au>Dai, Minhan</au><au>Wang, Haili</au><au>Qiu, Guoqiang</au><au>Chen, Jianfang</au><au>Li, Hongliang</au><au>Kao, Shuh‐Ji</au><au>Yang, Jin‐Yu Terence</au><au>Cai, Pinghe</au><au>Zhou, Kuanbo</au><au>Yang, Weifeng</au><au>Zhu, Yifan</au><au>Liu, Zhiyu</au><au>Chen, Mingming</au><au>Zuo, Zuhui</au><au>Gaye, Birgit</au><au>Wiesner, Martin G.</au><au>Zhang, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems</atitle><jtitle>Geophysical research letters</jtitle><date>2020-09-28</date><risdate>2020</risdate><volume>47</volume><issue>18</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Deep ocean microorganisms consume particulate organic matter that is produced in the surface ocean and exported to deeper depths. Such consumption not only enriches inorganic carbon in the deep ocean but also transforms organic carbon into recalcitrant forms, creating an alternative type of carbon sequestration. However, estimates of deep microbial carbon demand substantially exceed the available particulate organic carbon exported from the euphotic zone, resulting in an unbalanced dark ocean carbon budget. Here, we combined field‐based microbial activity parameters, integrated multiyear particle export flux data, sinking particle fluxes measured by sediment traps, and optical data from Biogeochemical‐Argo floats to quantify the main sources of organic carbon to the dark ocean. Laterally transported particles (including sinking and suspended particles) serve as a major energy source, which directly provide organic carbon and enhance new organic carbon production by dark carbon fixation, reconciling the mismatch in the regional carbon budget. Plain Language Summary Particulate organic matter, produced by phytoplankton in the upper ocean, can sink through the water column and act as a source of organic matter to the deep ocean. These particles are decomposed to carbon dioxide by microorganisms, resulting in dissolved inorganic carbon and organic carbon resistant to decomposition in the deeper ocean. This process controls the biological sequestration of CO2 by the oceans. However, there is an imbalance between the low amount of organic carbon exported from the photic zone and the high microbial demand for carbon in the dark ocean. We attempted to explain how the deep ocean carbon and energy supply can meet the microbial metabolic demand. Four main organic carbon sources were measured and quantified in the South China Sea: particles that come from the photic zone, particles that move laterally through the ocean, dark carbon fixation, and dissolved organic carbon. We found that laterally transported particles from the surrounding margins provide a direct source of organic carbon and also allow for much new organic carbon production through dark carbon fixation. These particles, which provide a major energy source to dark ocean ecosystems, help resolve the mismatch in the regional carbon budget. Key Points Data from Biogeochemical‐Argo floats showed direct evidence of episodic pulses of laterally transported particles into the deep sea Laterally transported particles are a direct organic carbon source and also enhance new organic carbon production by dark carbon fixation Laterally transported particles provide major carbon and energy for deep ecosystems, reconciling the mismatch in the regional carbon budget</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020GL088971</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0550-0701</orcidid><orcidid>https://orcid.org/0000-0002-5054-9099</orcidid><orcidid>https://orcid.org/0000-0002-6356-6744</orcidid><orcidid>https://orcid.org/0000-0003-2408-7422</orcidid><orcidid>https://orcid.org/0000-0002-2225-1746</orcidid><orcidid>https://orcid.org/0000-0002-9339-1746</orcidid><orcidid>https://orcid.org/0000-0003-4310-1760</orcidid><orcidid>https://orcid.org/0000-0003-1211-4745</orcidid><orcidid>https://orcid.org/0000-0002-6521-0266</orcidid><orcidid>https://orcid.org/0000-0003-2066-0375</orcidid><orcidid>https://orcid.org/0000-0001-5293-1390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2020-09, Vol.47 (18), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2446324698
source Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Biogeochemistry
Biological activity
Carbon
carbon and energy source
Carbon budget
Carbon dioxide
Carbon fixation
Carbon sequestration
Carbon sources
dark ocean ecosystem
Decomposition
Demand
Dissolved inorganic carbon
Dissolved organic carbon
Drifters
Ecosystems
Energy
Energy sources
Euphotic zone
Exports
Floats
Fluxes
lateral particle transport
Marine ecosystems
Microbial activity
microbial carbon demand
Microorganisms
Oceans
Organic carbon
Organic matter
Particle settling
Particulate flux
Particulate organic carbon
Particulate organic matter
Phytoplankton
Process control
Process controls
Sediment traps
Sinking
sinking POC flux
Upper ocean
Water circulation
Water column
title Laterally Transported Particles From Margins Serve as a Major Carbon and Energy Source for Dark Ocean Ecosystems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T18%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laterally%20Transported%20Particles%20From%20Margins%20Serve%20as%20a%20Major%20Carbon%20and%20Energy%20Source%20for%20Dark%20Ocean%20Ecosystems&rft.jtitle=Geophysical%20research%20letters&rft.au=Shen,%20Jiaming&rft.date=2020-09-28&rft.volume=47&rft.issue=18&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL088971&rft_dat=%3Cproquest_cross%3E2446324698%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446324698&rft_id=info:pmid/&rfr_iscdi=true