Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms

This paper presents new conditions for stability analysis, static output-feedback and state-feedback control design for discrete-time linear parameter-varying systems. The proposed methodology is based on the combination of quadratic “Lyapunov-like” terms such that individually each one is not neces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Franklin Institute 2020-07, Vol.357 (11), p.6595-6614
Hauptverfasser: Peixoto, Márcia L.C., Pessim, Paulo S.P., Lacerda, Márcio J., Palhares, Reinaldo M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6614
container_issue 11
container_start_page 6595
container_title Journal of the Franklin Institute
container_volume 357
creator Peixoto, Márcia L.C.
Pessim, Paulo S.P.
Lacerda, Márcio J.
Palhares, Reinaldo M.
description This paper presents new conditions for stability analysis, static output-feedback and state-feedback control design for discrete-time linear parameter-varying systems. The proposed methodology is based on the combination of quadratic “Lyapunov-like” terms such that individually each one is not necessarily monotonically decreasing along the state trajectories. Firstly, a new necessary and sufficient stability analysis condition based on the use of non-monotonic terms in the Lyapunov function is proposed. Concerning the stabilization problem, a novel strategy for the static output-feedback control design is proposed and, unlike most approaches in the literature, no structural constraints on the output matrix are imposed, which it is an extra feature advantage of the proposed method as well. Besides that, a new gain-scheduling state-feedback control design solution is derived. All proposed conditions are presented in the form of Linear Matrix Inequalities and their feasibility implies the existence of a Lyapunov function that is monotonically decreasing along trajectories. Numerical experiments illustrate the potential of the proposed techniques.
doi_str_mv 10.1016/j.jfranklin.2020.04.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446296915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003220302453</els_id><sourcerecordid>2446296915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5a9ae895226801a20ef600eb86c490c19ca479123e9069b0dcb412da7021ba9d3</originalsourceid><addsrcrecordid>eNqFkN1KxDAQhYMouK4-gwGvWydpN20ul8U_KCj4cxvSNMXUbbIm6Up9Gp_FJ7PLirdeDYc55wzzIXROICVA2GWXdq2X9m1tbEqBQgp5CoQfoBkpC55QxrNDNIPJmgBk9BidhNBNsiAAMyQfo6zN2sQRS9vgsFefMhpnces8rh5ecBhD1H3AtQy6wdOiGuVmsG6L28GqnTXgDxNfsXU26Z110Vmjvr-i9n04RUetXAd99jvn6Pn66ml1m1T3N3erZZWoLM9ispBc6pIvKGUlEElBtwxA1yVTOQdFuJJ5wQnNNAfGa2hUnRPayAIoqSVvsjm62PduvHsfdIiic4O300lB85xRzjhZTK5i71LeheB1Kzbe9NKPgoDY8RSd-OMpdjwF5GLiOSWX-6Sentga7UVQRlulG-O1iqJx5t-OHy0fhL0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446296915</pqid></control><display><type>article</type><title>Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms</title><source>Elsevier ScienceDirect Journals</source><creator>Peixoto, Márcia L.C. ; Pessim, Paulo S.P. ; Lacerda, Márcio J. ; Palhares, Reinaldo M.</creator><creatorcontrib>Peixoto, Márcia L.C. ; Pessim, Paulo S.P. ; Lacerda, Márcio J. ; Palhares, Reinaldo M.</creatorcontrib><description>This paper presents new conditions for stability analysis, static output-feedback and state-feedback control design for discrete-time linear parameter-varying systems. The proposed methodology is based on the combination of quadratic “Lyapunov-like” terms such that individually each one is not necessarily monotonically decreasing along the state trajectories. Firstly, a new necessary and sufficient stability analysis condition based on the use of non-monotonic terms in the Lyapunov function is proposed. Concerning the stabilization problem, a novel strategy for the static output-feedback control design is proposed and, unlike most approaches in the literature, no structural constraints on the output matrix are imposed, which it is an extra feature advantage of the proposed method as well. Besides that, a new gain-scheduling state-feedback control design solution is derived. All proposed conditions are presented in the form of Linear Matrix Inequalities and their feasibility implies the existence of a Lyapunov function that is monotonically decreasing along trajectories. Numerical experiments illustrate the potential of the proposed techniques.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2020.04.019</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Control stability ; Control systems ; Design parameters ; Discrete element method ; Discrete time systems ; Feasibility ; Feedback control ; Feedback control systems ; Gain scheduling ; Liapunov functions ; Linear matrix inequalities ; Output feedback ; Stability analysis ; Systems stability</subject><ispartof>Journal of the Franklin Institute, 2020-07, Vol.357 (11), p.6595-6614</ispartof><rights>2020 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Jul 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5a9ae895226801a20ef600eb86c490c19ca479123e9069b0dcb412da7021ba9d3</citedby><cites>FETCH-LOGICAL-c343t-5a9ae895226801a20ef600eb86c490c19ca479123e9069b0dcb412da7021ba9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2020.04.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Peixoto, Márcia L.C.</creatorcontrib><creatorcontrib>Pessim, Paulo S.P.</creatorcontrib><creatorcontrib>Lacerda, Márcio J.</creatorcontrib><creatorcontrib>Palhares, Reinaldo M.</creatorcontrib><title>Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms</title><title>Journal of the Franklin Institute</title><description>This paper presents new conditions for stability analysis, static output-feedback and state-feedback control design for discrete-time linear parameter-varying systems. The proposed methodology is based on the combination of quadratic “Lyapunov-like” terms such that individually each one is not necessarily monotonically decreasing along the state trajectories. Firstly, a new necessary and sufficient stability analysis condition based on the use of non-monotonic terms in the Lyapunov function is proposed. Concerning the stabilization problem, a novel strategy for the static output-feedback control design is proposed and, unlike most approaches in the literature, no structural constraints on the output matrix are imposed, which it is an extra feature advantage of the proposed method as well. Besides that, a new gain-scheduling state-feedback control design solution is derived. All proposed conditions are presented in the form of Linear Matrix Inequalities and their feasibility implies the existence of a Lyapunov function that is monotonically decreasing along trajectories. Numerical experiments illustrate the potential of the proposed techniques.</description><subject>Control stability</subject><subject>Control systems</subject><subject>Design parameters</subject><subject>Discrete element method</subject><subject>Discrete time systems</subject><subject>Feasibility</subject><subject>Feedback control</subject><subject>Feedback control systems</subject><subject>Gain scheduling</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>Output feedback</subject><subject>Stability analysis</subject><subject>Systems stability</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KxDAQhYMouK4-gwGvWydpN20ul8U_KCj4cxvSNMXUbbIm6Up9Gp_FJ7PLirdeDYc55wzzIXROICVA2GWXdq2X9m1tbEqBQgp5CoQfoBkpC55QxrNDNIPJmgBk9BidhNBNsiAAMyQfo6zN2sQRS9vgsFefMhpnces8rh5ecBhD1H3AtQy6wdOiGuVmsG6L28GqnTXgDxNfsXU26Z110Vmjvr-i9n04RUetXAd99jvn6Pn66ml1m1T3N3erZZWoLM9ispBc6pIvKGUlEElBtwxA1yVTOQdFuJJ5wQnNNAfGa2hUnRPayAIoqSVvsjm62PduvHsfdIiic4O300lB85xRzjhZTK5i71LeheB1Kzbe9NKPgoDY8RSd-OMpdjwF5GLiOSWX-6Sentga7UVQRlulG-O1iqJx5t-OHy0fhL0</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Peixoto, Márcia L.C.</creator><creator>Pessim, Paulo S.P.</creator><creator>Lacerda, Márcio J.</creator><creator>Palhares, Reinaldo M.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>202007</creationdate><title>Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms</title><author>Peixoto, Márcia L.C. ; Pessim, Paulo S.P. ; Lacerda, Márcio J. ; Palhares, Reinaldo M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5a9ae895226801a20ef600eb86c490c19ca479123e9069b0dcb412da7021ba9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control stability</topic><topic>Control systems</topic><topic>Design parameters</topic><topic>Discrete element method</topic><topic>Discrete time systems</topic><topic>Feasibility</topic><topic>Feedback control</topic><topic>Feedback control systems</topic><topic>Gain scheduling</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>Output feedback</topic><topic>Stability analysis</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, Márcia L.C.</creatorcontrib><creatorcontrib>Pessim, Paulo S.P.</creatorcontrib><creatorcontrib>Lacerda, Márcio J.</creatorcontrib><creatorcontrib>Palhares, Reinaldo M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peixoto, Márcia L.C.</au><au>Pessim, Paulo S.P.</au><au>Lacerda, Márcio J.</au><au>Palhares, Reinaldo M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2020-07</date><risdate>2020</risdate><volume>357</volume><issue>11</issue><spage>6595</spage><epage>6614</epage><pages>6595-6614</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>This paper presents new conditions for stability analysis, static output-feedback and state-feedback control design for discrete-time linear parameter-varying systems. The proposed methodology is based on the combination of quadratic “Lyapunov-like” terms such that individually each one is not necessarily monotonically decreasing along the state trajectories. Firstly, a new necessary and sufficient stability analysis condition based on the use of non-monotonic terms in the Lyapunov function is proposed. Concerning the stabilization problem, a novel strategy for the static output-feedback control design is proposed and, unlike most approaches in the literature, no structural constraints on the output matrix are imposed, which it is an extra feature advantage of the proposed method as well. Besides that, a new gain-scheduling state-feedback control design solution is derived. All proposed conditions are presented in the form of Linear Matrix Inequalities and their feasibility implies the existence of a Lyapunov function that is monotonically decreasing along trajectories. Numerical experiments illustrate the potential of the proposed techniques.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2020.04.019</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-0032
ispartof Journal of the Franklin Institute, 2020-07, Vol.357 (11), p.6595-6614
issn 0016-0032
1879-2693
0016-0032
language eng
recordid cdi_proquest_journals_2446296915
source Elsevier ScienceDirect Journals
subjects Control stability
Control systems
Design parameters
Discrete element method
Discrete time systems
Feasibility
Feedback control
Feedback control systems
Gain scheduling
Liapunov functions
Linear matrix inequalities
Output feedback
Stability analysis
Systems stability
title Stability and stabilization for LPV systems based on Lyapunov functions with non-monotonic terms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20and%20stabilization%20for%20LPV%20systems%20based%20on%20Lyapunov%20functions%20with%20non-monotonic%C2%A0terms&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Peixoto,%20M%C3%A1rcia%20L.C.&rft.date=2020-07&rft.volume=357&rft.issue=11&rft.spage=6595&rft.epage=6614&rft.pages=6595-6614&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2020.04.019&rft_dat=%3Cproquest_cross%3E2446296915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446296915&rft_id=info:pmid/&rft_els_id=S0016003220302453&rfr_iscdi=true