Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames
An experimental study on laminar flame speed, Markstein length, and the onset of cellular instability was conducted by varying the equivalence ratio and ethylene/methane mixing ratio in spherically propagating premixed flames at ambient temperature and elevated pressures up to 0.8 MPa. Unstretched l...
Gespeichert in:
Veröffentlicht in: | Combustion and flame 2020-04, Vol.214, p.464-474 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | |
container_start_page | 464 |
container_title | Combustion and flame |
container_volume | 214 |
creator | Kim, Hee J. Van, Kyuho Lee, Dae K. Yoo, Chun S. Park, Jeong Chung, Suk H. |
description | An experimental study on laminar flame speed, Markstein length, and the onset of cellular instability was conducted by varying the equivalence ratio and ethylene/methane mixing ratio in spherically propagating premixed flames at ambient temperature and elevated pressures up to 0.8 MPa. Unstretched laminar burning velocities were first validated for methane − air flames by optimizing the range of the flame radius in testing linear and non-linear extrapolation models, and subsequently comparing the results with those simulated using four kinetic mechanisms. Based on the results, unstretched laminar burning velocities were determined for premixed flames of methane/ethylene mixture fuels. The predictability of theoretical Markstein lengths was appreciated by adopting a composite solution of the heat-release-weighted Lewis number and the temperature-dependent Zel'dovich number. Measured Markstein lengths were compared with those predicted based on a composite model for laminar flame speeds against flame radius. Depending on the fuels (methane or methane/ethylene mixture), pressure, and equivalence ratio, the predictability of the model varied. For methane − air flames, cellular instabilities were not observed within the observation window at pressures up to 0.6 MPa. Cell formation, caused by hydrodynamic instability, was enhanced by an increase in the ethylene ratio and chamber pressure. Theoretical critical flame radii for the onset of cellular instability predicted by the composite model were consistent with the measured ones for both lean and rich mixtures. |
doi_str_mv | 10.1016/j.combustflame.2020.01.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446296288</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218020300146</els_id><sourcerecordid>2446296288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-543f5cf19dee956f1d4796b0c6a1fdf8f621ce557faa498cea84e1201f8d3fa3</originalsourceid><addsrcrecordid>eNqNkU2OEzEQhS0EEmHgDi3YTmdcbrfTzQ4NP4MUxGb2VsUuJw5ud7AdNNkhrsANOcl4CAtWCKmkt_neqyo9xl4CXwIHdbVfmnnaHHNxASdaCi74kkMdeMQW0PeqFaOAx2zBOfBWwMCfsmc57znnK9l1C_ZjjZOPmJrfAU0-ENnL5hOmL7mQj02guC27ywajbQyFcAyV9TEX3Pjgy6lxc6quHSVvMIRTc0jzAbdYfNw2E5UdRrqqcqpB9Ov7T_SpIjT5O7Lnnfk5e-IwZHrxRy_Y7ft3t9c37frzh4_Xb9atkZ0obS871xsHoyUae-XAytWoNtwoBGfd4JQAQ32_cohyHAzhIAkEBzfYzmF3wV6dY-uFX4-Ui97PxxTrRi2kVGJUYhj-TQmuOimHsVKvz5RJc86JnD4kP2E6aeD6oRi9138Xox-K0RzqQDW_PZupPvvNU9LZeIqGrE9kiraz_5-Ye-m3ob4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420634489</pqid></control><display><type>article</type><title>Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Hee J. ; Van, Kyuho ; Lee, Dae K. ; Yoo, Chun S. ; Park, Jeong ; Chung, Suk H.</creator><creatorcontrib>Kim, Hee J. ; Van, Kyuho ; Lee, Dae K. ; Yoo, Chun S. ; Park, Jeong ; Chung, Suk H.</creatorcontrib><description>An experimental study on laminar flame speed, Markstein length, and the onset of cellular instability was conducted by varying the equivalence ratio and ethylene/methane mixing ratio in spherically propagating premixed flames at ambient temperature and elevated pressures up to 0.8 MPa. Unstretched laminar burning velocities were first validated for methane − air flames by optimizing the range of the flame radius in testing linear and non-linear extrapolation models, and subsequently comparing the results with those simulated using four kinetic mechanisms. Based on the results, unstretched laminar burning velocities were determined for premixed flames of methane/ethylene mixture fuels. The predictability of theoretical Markstein lengths was appreciated by adopting a composite solution of the heat-release-weighted Lewis number and the temperature-dependent Zel'dovich number. Measured Markstein lengths were compared with those predicted based on a composite model for laminar flame speeds against flame radius. Depending on the fuels (methane or methane/ethylene mixture), pressure, and equivalence ratio, the predictability of the model varied. For methane − air flames, cellular instabilities were not observed within the observation window at pressures up to 0.6 MPa. Cell formation, caused by hydrodynamic instability, was enhanced by an increase in the ethylene ratio and chamber pressure. Theoretical critical flame radii for the onset of cellular instability predicted by the composite model were consistent with the measured ones for both lean and rich mixtures.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2020.01.011</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Ambient temperature ; Cellular instability ; Computer simulation ; Critical flame radius ; Equivalence ratio ; Ethylene ; Flame speed ; Flames ; Fuels ; Laminar composites ; Laminar flame speed ; Markstein length ; Methane ; Methane/ethylene ; Premixed flames ; Stability ; Temperature dependence ; Velocity</subject><ispartof>Combustion and flame, 2020-04, Vol.214, p.464-474</ispartof><rights>2020 The Combustion Institute</rights><rights>Copyright Elsevier BV Apr 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-543f5cf19dee956f1d4796b0c6a1fdf8f621ce557faa498cea84e1201f8d3fa3</citedby><cites>FETCH-LOGICAL-c432t-543f5cf19dee956f1d4796b0c6a1fdf8f621ce557faa498cea84e1201f8d3fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010218020300146$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Kim, Hee J.</creatorcontrib><creatorcontrib>Van, Kyuho</creatorcontrib><creatorcontrib>Lee, Dae K.</creatorcontrib><creatorcontrib>Yoo, Chun S.</creatorcontrib><creatorcontrib>Park, Jeong</creatorcontrib><creatorcontrib>Chung, Suk H.</creatorcontrib><title>Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames</title><title>Combustion and flame</title><description>An experimental study on laminar flame speed, Markstein length, and the onset of cellular instability was conducted by varying the equivalence ratio and ethylene/methane mixing ratio in spherically propagating premixed flames at ambient temperature and elevated pressures up to 0.8 MPa. Unstretched laminar burning velocities were first validated for methane − air flames by optimizing the range of the flame radius in testing linear and non-linear extrapolation models, and subsequently comparing the results with those simulated using four kinetic mechanisms. Based on the results, unstretched laminar burning velocities were determined for premixed flames of methane/ethylene mixture fuels. The predictability of theoretical Markstein lengths was appreciated by adopting a composite solution of the heat-release-weighted Lewis number and the temperature-dependent Zel'dovich number. Measured Markstein lengths were compared with those predicted based on a composite model for laminar flame speeds against flame radius. Depending on the fuels (methane or methane/ethylene mixture), pressure, and equivalence ratio, the predictability of the model varied. For methane − air flames, cellular instabilities were not observed within the observation window at pressures up to 0.6 MPa. Cell formation, caused by hydrodynamic instability, was enhanced by an increase in the ethylene ratio and chamber pressure. Theoretical critical flame radii for the onset of cellular instability predicted by the composite model were consistent with the measured ones for both lean and rich mixtures.</description><subject>Ambient temperature</subject><subject>Cellular instability</subject><subject>Computer simulation</subject><subject>Critical flame radius</subject><subject>Equivalence ratio</subject><subject>Ethylene</subject><subject>Flame speed</subject><subject>Flames</subject><subject>Fuels</subject><subject>Laminar composites</subject><subject>Laminar flame speed</subject><subject>Markstein length</subject><subject>Methane</subject><subject>Methane/ethylene</subject><subject>Premixed flames</subject><subject>Stability</subject><subject>Temperature dependence</subject><subject>Velocity</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkU2OEzEQhS0EEmHgDi3YTmdcbrfTzQ4NP4MUxGb2VsUuJw5ud7AdNNkhrsANOcl4CAtWCKmkt_neqyo9xl4CXwIHdbVfmnnaHHNxASdaCi74kkMdeMQW0PeqFaOAx2zBOfBWwMCfsmc57znnK9l1C_ZjjZOPmJrfAU0-ENnL5hOmL7mQj02guC27ywajbQyFcAyV9TEX3Pjgy6lxc6quHSVvMIRTc0jzAbdYfNw2E5UdRrqqcqpB9Ov7T_SpIjT5O7Lnnfk5e-IwZHrxRy_Y7ft3t9c37frzh4_Xb9atkZ0obS871xsHoyUae-XAytWoNtwoBGfd4JQAQ32_cohyHAzhIAkEBzfYzmF3wV6dY-uFX4-Ui97PxxTrRi2kVGJUYhj-TQmuOimHsVKvz5RJc86JnD4kP2E6aeD6oRi9138Xox-K0RzqQDW_PZupPvvNU9LZeIqGrE9kiraz_5-Ye-m3ob4</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Kim, Hee J.</creator><creator>Van, Kyuho</creator><creator>Lee, Dae K.</creator><creator>Yoo, Chun S.</creator><creator>Park, Jeong</creator><creator>Chung, Suk H.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>202004</creationdate><title>Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames</title><author>Kim, Hee J. ; Van, Kyuho ; Lee, Dae K. ; Yoo, Chun S. ; Park, Jeong ; Chung, Suk H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-543f5cf19dee956f1d4796b0c6a1fdf8f621ce557faa498cea84e1201f8d3fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ambient temperature</topic><topic>Cellular instability</topic><topic>Computer simulation</topic><topic>Critical flame radius</topic><topic>Equivalence ratio</topic><topic>Ethylene</topic><topic>Flame speed</topic><topic>Flames</topic><topic>Fuels</topic><topic>Laminar composites</topic><topic>Laminar flame speed</topic><topic>Markstein length</topic><topic>Methane</topic><topic>Methane/ethylene</topic><topic>Premixed flames</topic><topic>Stability</topic><topic>Temperature dependence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hee J.</creatorcontrib><creatorcontrib>Van, Kyuho</creatorcontrib><creatorcontrib>Lee, Dae K.</creatorcontrib><creatorcontrib>Yoo, Chun S.</creatorcontrib><creatorcontrib>Park, Jeong</creatorcontrib><creatorcontrib>Chung, Suk H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hee J.</au><au>Van, Kyuho</au><au>Lee, Dae K.</au><au>Yoo, Chun S.</au><au>Park, Jeong</au><au>Chung, Suk H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames</atitle><jtitle>Combustion and flame</jtitle><date>2020-04</date><risdate>2020</risdate><volume>214</volume><spage>464</spage><epage>474</epage><pages>464-474</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><abstract>An experimental study on laminar flame speed, Markstein length, and the onset of cellular instability was conducted by varying the equivalence ratio and ethylene/methane mixing ratio in spherically propagating premixed flames at ambient temperature and elevated pressures up to 0.8 MPa. Unstretched laminar burning velocities were first validated for methane − air flames by optimizing the range of the flame radius in testing linear and non-linear extrapolation models, and subsequently comparing the results with those simulated using four kinetic mechanisms. Based on the results, unstretched laminar burning velocities were determined for premixed flames of methane/ethylene mixture fuels. The predictability of theoretical Markstein lengths was appreciated by adopting a composite solution of the heat-release-weighted Lewis number and the temperature-dependent Zel'dovich number. Measured Markstein lengths were compared with those predicted based on a composite model for laminar flame speeds against flame radius. Depending on the fuels (methane or methane/ethylene mixture), pressure, and equivalence ratio, the predictability of the model varied. For methane − air flames, cellular instabilities were not observed within the observation window at pressures up to 0.6 MPa. Cell formation, caused by hydrodynamic instability, was enhanced by an increase in the ethylene ratio and chamber pressure. Theoretical critical flame radii for the onset of cellular instability predicted by the composite model were consistent with the measured ones for both lean and rich mixtures.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2020.01.011</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2020-04, Vol.214, p.464-474 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_proquest_journals_2446296288 |
source | Elsevier ScienceDirect Journals |
subjects | Ambient temperature Cellular instability Computer simulation Critical flame radius Equivalence ratio Ethylene Flame speed Flames Fuels Laminar composites Laminar flame speed Markstein length Methane Methane/ethylene Premixed flames Stability Temperature dependence Velocity |
title | Laminar flame speed, Markstein length, and cellular instability for spherically propagating methane/ethylene–air premixed flames |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A26%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laminar%20flame%20speed,%20Markstein%20length,%20and%20cellular%20instability%20for%20spherically%20propagating%20methane/ethylene%E2%80%93air%20premixed%20flames&rft.jtitle=Combustion%20and%20flame&rft.au=Kim,%20Hee%20J.&rft.date=2020-04&rft.volume=214&rft.spage=464&rft.epage=474&rft.pages=464-474&rft.issn=0010-2180&rft.eissn=1556-2921&rft_id=info:doi/10.1016/j.combustflame.2020.01.011&rft_dat=%3Cproquest_cross%3E2446296288%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420634489&rft_id=info:pmid/&rft_els_id=S0010218020300146&rfr_iscdi=true |