A Hybrid Reducing Error Correcting Output Code for Lithology Identification

Lithology information is critical to the adjustment of drilling control strategies, and can be identified by training a classification model from the well logging data. However, achieving accurate lithology identification is rather difficult owing to complex characteristics, such as data imbalance,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-10, Vol.67 (10), p.2254-2258
Hauptverfasser: Chen, Xi, Cao, Weihua, Gan, Chao, Hu, Wenkai, Wu, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2258
container_issue 10
container_start_page 2254
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 67
creator Chen, Xi
Cao, Weihua
Gan, Chao
Hu, Wenkai
Wu, Min
description Lithology information is critical to the adjustment of drilling control strategies, and can be identified by training a classification model from the well logging data. However, achieving accurate lithology identification is rather difficult owing to complex characteristics, such as data imbalance, data-overlapping, and multi-classification. In this brief, a hybrid lithology identification method is developed based on the Reducing Error Correcting Output Code algorithm with the Kernel Fisher Discriminant Analysis (RECOC-KFDA). The effectiveness of the proposed method is demonstrated based on case studies with the UCI machine learning database and the real logging data. The results show that the proposed method has superior performances compared to conventional methods.
doi_str_mv 10.1109/TCSII.2019.2950269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2446060537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8887232</ieee_id><sourcerecordid>2446060537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-4f03b0e60e9c2c5e176f25bfc1c1e15a120e4fb03427073c6a522773eb2276fe3</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EEqXwA3CJxDllbcd2fKwioBWVKkE5W4mzLq5KUhzn0L8noRWnWc3O7EqPkHsKM0pBP22Kj-VyxoDqGdMCmNQXZEKFyFOuNL0c50ynSmXqmtx03Q6AaeBsQt7myeJYBV8n71j31jfb5DmENiRFGwLaOBrrPh76ODg1Jm5YrXz8avft9pgsa2yid96W0bfNLbly5b7Du7NOyefL86ZYpKv167KYr1LLJY1p5oBXgBJQW2YFUiUdE5Wz1FKkoqQMMHMV8IwpUNzKUjCmFMdqEOmQT8nj6e4htD89dtHs2j40w0vDskyCBMHVkGKnlA1t1wV05hD8dxmOhoIZoZk_aGaEZs7QhtLDqeQR8b-Q57linPFfIRlntg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446060537</pqid></control><display><type>article</type><title>A Hybrid Reducing Error Correcting Output Code for Lithology Identification</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Xi ; Cao, Weihua ; Gan, Chao ; Hu, Wenkai ; Wu, Min</creator><creatorcontrib>Chen, Xi ; Cao, Weihua ; Gan, Chao ; Hu, Wenkai ; Wu, Min</creatorcontrib><description>Lithology information is critical to the adjustment of drilling control strategies, and can be identified by training a classification model from the well logging data. However, achieving accurate lithology identification is rather difficult owing to complex characteristics, such as data imbalance, data-overlapping, and multi-classification. In this brief, a hybrid lithology identification method is developed based on the Reducing Error Correcting Output Code algorithm with the Kernel Fisher Discriminant Analysis (RECOC-KFDA). The effectiveness of the proposed method is demonstrated based on case studies with the UCI machine learning database and the real logging data. The results show that the proposed method has superior performances compared to conventional methods.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2950269</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Circuits and systems ; Classification ; Data logging ; Discriminant analysis ; Drilling machines ; Encoding ; Error correction ; Error reduction ; Identification methods ; imbalanced dataset ; Kernel ; kernel fisher discriminant analysis ; Lithology ; Lithology identification ; Machine learning ; Measurement ; multi-class learning ; reducing error correcting output codes ; Training</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2020-10, Vol.67 (10), p.2254-2258</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-4f03b0e60e9c2c5e176f25bfc1c1e15a120e4fb03427073c6a522773eb2276fe3</citedby><cites>FETCH-LOGICAL-c361t-4f03b0e60e9c2c5e176f25bfc1c1e15a120e4fb03427073c6a522773eb2276fe3</cites><orcidid>0000-0002-9677-9586 ; 0000-0002-4460-2279 ; 0000-0002-0668-8315 ; 0000-0002-9109-2849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8887232$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8887232$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Cao, Weihua</creatorcontrib><creatorcontrib>Gan, Chao</creatorcontrib><creatorcontrib>Hu, Wenkai</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><title>A Hybrid Reducing Error Correcting Output Code for Lithology Identification</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>Lithology information is critical to the adjustment of drilling control strategies, and can be identified by training a classification model from the well logging data. However, achieving accurate lithology identification is rather difficult owing to complex characteristics, such as data imbalance, data-overlapping, and multi-classification. In this brief, a hybrid lithology identification method is developed based on the Reducing Error Correcting Output Code algorithm with the Kernel Fisher Discriminant Analysis (RECOC-KFDA). The effectiveness of the proposed method is demonstrated based on case studies with the UCI machine learning database and the real logging data. The results show that the proposed method has superior performances compared to conventional methods.</description><subject>Algorithms</subject><subject>Circuits and systems</subject><subject>Classification</subject><subject>Data logging</subject><subject>Discriminant analysis</subject><subject>Drilling machines</subject><subject>Encoding</subject><subject>Error correction</subject><subject>Error reduction</subject><subject>Identification methods</subject><subject>imbalanced dataset</subject><subject>Kernel</subject><subject>kernel fisher discriminant analysis</subject><subject>Lithology</subject><subject>Lithology identification</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multi-class learning</subject><subject>reducing error correcting output codes</subject><subject>Training</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwzAQRC0EEqXwA3CJxDllbcd2fKwioBWVKkE5W4mzLq5KUhzn0L8noRWnWc3O7EqPkHsKM0pBP22Kj-VyxoDqGdMCmNQXZEKFyFOuNL0c50ynSmXqmtx03Q6AaeBsQt7myeJYBV8n71j31jfb5DmENiRFGwLaOBrrPh76ODg1Jm5YrXz8avft9pgsa2yid96W0bfNLbly5b7Du7NOyefL86ZYpKv167KYr1LLJY1p5oBXgBJQW2YFUiUdE5Wz1FKkoqQMMHMV8IwpUNzKUjCmFMdqEOmQT8nj6e4htD89dtHs2j40w0vDskyCBMHVkGKnlA1t1wV05hD8dxmOhoIZoZk_aGaEZs7QhtLDqeQR8b-Q57linPFfIRlntg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Chen, Xi</creator><creator>Cao, Weihua</creator><creator>Gan, Chao</creator><creator>Hu, Wenkai</creator><creator>Wu, Min</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9677-9586</orcidid><orcidid>https://orcid.org/0000-0002-4460-2279</orcidid><orcidid>https://orcid.org/0000-0002-0668-8315</orcidid><orcidid>https://orcid.org/0000-0002-9109-2849</orcidid></search><sort><creationdate>20201001</creationdate><title>A Hybrid Reducing Error Correcting Output Code for Lithology Identification</title><author>Chen, Xi ; Cao, Weihua ; Gan, Chao ; Hu, Wenkai ; Wu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-4f03b0e60e9c2c5e176f25bfc1c1e15a120e4fb03427073c6a522773eb2276fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Circuits and systems</topic><topic>Classification</topic><topic>Data logging</topic><topic>Discriminant analysis</topic><topic>Drilling machines</topic><topic>Encoding</topic><topic>Error correction</topic><topic>Error reduction</topic><topic>Identification methods</topic><topic>imbalanced dataset</topic><topic>Kernel</topic><topic>kernel fisher discriminant analysis</topic><topic>Lithology</topic><topic>Lithology identification</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multi-class learning</topic><topic>reducing error correcting output codes</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Cao, Weihua</creatorcontrib><creatorcontrib>Gan, Chao</creatorcontrib><creatorcontrib>Hu, Wenkai</creatorcontrib><creatorcontrib>Wu, Min</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Xi</au><au>Cao, Weihua</au><au>Gan, Chao</au><au>Hu, Wenkai</au><au>Wu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hybrid Reducing Error Correcting Output Code for Lithology Identification</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>10</issue><spage>2254</spage><epage>2258</epage><pages>2254-2258</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>Lithology information is critical to the adjustment of drilling control strategies, and can be identified by training a classification model from the well logging data. However, achieving accurate lithology identification is rather difficult owing to complex characteristics, such as data imbalance, data-overlapping, and multi-classification. In this brief, a hybrid lithology identification method is developed based on the Reducing Error Correcting Output Code algorithm with the Kernel Fisher Discriminant Analysis (RECOC-KFDA). The effectiveness of the proposed method is demonstrated based on case studies with the UCI machine learning database and the real logging data. The results show that the proposed method has superior performances compared to conventional methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2950269</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9677-9586</orcidid><orcidid>https://orcid.org/0000-0002-4460-2279</orcidid><orcidid>https://orcid.org/0000-0002-0668-8315</orcidid><orcidid>https://orcid.org/0000-0002-9109-2849</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2020-10, Vol.67 (10), p.2254-2258
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2446060537
source IEEE Electronic Library (IEL)
subjects Algorithms
Circuits and systems
Classification
Data logging
Discriminant analysis
Drilling machines
Encoding
Error correction
Error reduction
Identification methods
imbalanced dataset
Kernel
kernel fisher discriminant analysis
Lithology
Lithology identification
Machine learning
Measurement
multi-class learning
reducing error correcting output codes
Training
title A Hybrid Reducing Error Correcting Output Code for Lithology Identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hybrid%20Reducing%20Error%20Correcting%20Output%20Code%20for%20Lithology%20Identification&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Chen,%20Xi&rft.date=2020-10-01&rft.volume=67&rft.issue=10&rft.spage=2254&rft.epage=2258&rft.pages=2254-2258&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2950269&rft_dat=%3Cproquest_RIE%3E2446060537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446060537&rft_id=info:pmid/&rft_ieee_id=8887232&rfr_iscdi=true