Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory
This brief proposes an approach for designing state observers for a class of discrete-time nonlinear systems. This brief involves the concepts of positivity and stability radii. The approach consists of applying the stability radii technique of discrete-time positive systems with time-varying nonlin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2020-10, Vol.67 (10), p.1959-1963 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1963 |
---|---|
container_issue | 10 |
container_start_page | 1959 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 67 |
creator | Aviles, Jesus D. Moreno, Jaime A. |
description | This brief proposes an approach for designing state observers for a class of discrete-time nonlinear systems. This brief involves the concepts of positivity and stability radii. The approach consists of applying the stability radii technique of discrete-time positive systems with time-varying nonlinear functions in the estimation error dynamics to guarantee the exponential convergence property of the observer. The design conditions, only valid for Lipschitz-type nonlinearities, can be transformed in some situations into Linear Matrix Inequalities (LMIs). A numerical example is included to illustrate the effectiveness of the theoretical results. |
doi_str_mv | 10.1109/TCSII.2019.2936900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2446059934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8809893</ieee_id><sourcerecordid>2446059934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4ce0474ea28fd88a74d152503ed1d334987201174f8ba8113929dfb1bdadf1d73</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-Ab008bzYr6Xt0eAXCZFElnPT3c5CCexiW0z237sI8TTv4X1mMg9C95SMKCX6qZgsptMRI1SPmOZjTcgFGtA8VxmXml4es9CZlEJeo5sYN4QwTTgboGJeRgg_EPALRL9qcN320ccqQIKs8DvAn22z9Q3YgBddTLCLeBl9s8JpDXiRbOm3PnX4yzrvcbGGNnS36Kq22wh35zlEy7fXYvKRzebv08nzLKuYzlMmKiBCCrBM1U4pK4WjOcsJB0cd50Ir2X9EpahVaRWlXDPt6pKWzrqaOsmH6PG0dx_a7wPEZDbtITT9ScOEGJNcay76Fju1qtDGGKA2--B3NnSGEnO0Z_7smaM9c7bXQw8nyAPAP6AU0Upz_gumi2s3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446059934</pqid></control><display><type>article</type><title>Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory</title><source>IEEE Electronic Library (IEL)</source><creator>Aviles, Jesus D. ; Moreno, Jaime A.</creator><creatorcontrib>Aviles, Jesus D. ; Moreno, Jaime A.</creatorcontrib><description>This brief proposes an approach for designing state observers for a class of discrete-time nonlinear systems. This brief involves the concepts of positivity and stability radii. The approach consists of applying the stability radii technique of discrete-time positive systems with time-varying nonlinear functions in the estimation error dynamics to guarantee the exponential convergence property of the observer. The design conditions, only valid for Lipschitz-type nonlinearities, can be transformed in some situations into Linear Matrix Inequalities (LMIs). A numerical example is included to illustrate the effectiveness of the theoretical results.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2936900</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic stability ; Circuit stability ; Discrete time systems ; discrete-time observers ; Linear matrix inequalities ; Linear systems ; Mathematical analysis ; Nonlinear systems ; Observers ; positive systems ; Stability ; Stability analysis ; Stability radii ; State observers</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2020-10, Vol.67 (10), p.1959-1963</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4ce0474ea28fd88a74d152503ed1d334987201174f8ba8113929dfb1bdadf1d73</citedby><cites>FETCH-LOGICAL-c295t-4ce0474ea28fd88a74d152503ed1d334987201174f8ba8113929dfb1bdadf1d73</cites><orcidid>0000-0002-2556-9784 ; 0000-0002-8820-6534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8809893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8809893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Aviles, Jesus D.</creatorcontrib><creatorcontrib>Moreno, Jaime A.</creatorcontrib><title>Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>This brief proposes an approach for designing state observers for a class of discrete-time nonlinear systems. This brief involves the concepts of positivity and stability radii. The approach consists of applying the stability radii technique of discrete-time positive systems with time-varying nonlinear functions in the estimation error dynamics to guarantee the exponential convergence property of the observer. The design conditions, only valid for Lipschitz-type nonlinearities, can be transformed in some situations into Linear Matrix Inequalities (LMIs). A numerical example is included to illustrate the effectiveness of the theoretical results.</description><subject>Asymptotic stability</subject><subject>Circuit stability</subject><subject>Discrete time systems</subject><subject>discrete-time observers</subject><subject>Linear matrix inequalities</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Nonlinear systems</subject><subject>Observers</subject><subject>positive systems</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Stability radii</subject><subject>State observers</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-Ab008bzYr6Xt0eAXCZFElnPT3c5CCexiW0z237sI8TTv4X1mMg9C95SMKCX6qZgsptMRI1SPmOZjTcgFGtA8VxmXml4es9CZlEJeo5sYN4QwTTgboGJeRgg_EPALRL9qcN320ccqQIKs8DvAn22z9Q3YgBddTLCLeBl9s8JpDXiRbOm3PnX4yzrvcbGGNnS36Kq22wh35zlEy7fXYvKRzebv08nzLKuYzlMmKiBCCrBM1U4pK4WjOcsJB0cd50Ir2X9EpahVaRWlXDPt6pKWzrqaOsmH6PG0dx_a7wPEZDbtITT9ScOEGJNcay76Fju1qtDGGKA2--B3NnSGEnO0Z_7smaM9c7bXQw8nyAPAP6AU0Upz_gumi2s3</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Aviles, Jesus D.</creator><creator>Moreno, Jaime A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2556-9784</orcidid><orcidid>https://orcid.org/0000-0002-8820-6534</orcidid></search><sort><creationdate>20201001</creationdate><title>Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory</title><author>Aviles, Jesus D. ; Moreno, Jaime A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4ce0474ea28fd88a74d152503ed1d334987201174f8ba8113929dfb1bdadf1d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asymptotic stability</topic><topic>Circuit stability</topic><topic>Discrete time systems</topic><topic>discrete-time observers</topic><topic>Linear matrix inequalities</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Nonlinear systems</topic><topic>Observers</topic><topic>positive systems</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Stability radii</topic><topic>State observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aviles, Jesus D.</creatorcontrib><creatorcontrib>Moreno, Jaime A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Aviles, Jesus D.</au><au>Moreno, Jaime A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>67</volume><issue>10</issue><spage>1959</spage><epage>1963</epage><pages>1959-1963</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>This brief proposes an approach for designing state observers for a class of discrete-time nonlinear systems. This brief involves the concepts of positivity and stability radii. The approach consists of applying the stability radii technique of discrete-time positive systems with time-varying nonlinear functions in the estimation error dynamics to guarantee the exponential convergence property of the observer. The design conditions, only valid for Lipschitz-type nonlinearities, can be transformed in some situations into Linear Matrix Inequalities (LMIs). A numerical example is included to illustrate the effectiveness of the theoretical results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2936900</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2556-9784</orcidid><orcidid>https://orcid.org/0000-0002-8820-6534</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2020-10, Vol.67 (10), p.1959-1963 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_proquest_journals_2446059934 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic stability Circuit stability Discrete time systems discrete-time observers Linear matrix inequalities Linear systems Mathematical analysis Nonlinear systems Observers positive systems Stability Stability analysis Stability radii State observers |
title | Observer Design for Discrete-Time Nonlinear Systems Using the Stability Radii Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A41%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observer%20Design%20for%20Discrete-Time%20Nonlinear%20Systems%20Using%20the%20Stability%20Radii%20Theory&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Aviles,%20Jesus%20D.&rft.date=2020-10-01&rft.volume=67&rft.issue=10&rft.spage=1959&rft.epage=1963&rft.pages=1959-1963&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2936900&rft_dat=%3Cproquest_RIE%3E2446059934%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446059934&rft_id=info:pmid/&rft_ieee_id=8809893&rfr_iscdi=true |