Molecular Type Permutation Shift Keying for Molecular Communication

Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2020-11, Vol.6 (2), p.160-164
Hauptverfasser: Tang, Yuankun, Wen, Miaowen, Chen, Xuan, Huang, Yu, Yang, Lie-Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue 2
container_start_page 160
container_title IEEE transactions on molecular, biological, and multi-scale communications
container_volume 6
creator Tang, Yuankun
Wen, Miaowen
Chen, Xuan
Huang, Yu
Yang, Lie-Liang
description Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.
doi_str_mv 10.1109/TMBMC.2020.3014803
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2446058912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9160969</ieee_id><sourcerecordid>2446058912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</originalsourceid><addsrcrecordid>eNpFkMtOwzAQAC0EEhX0B-ASiXPK7tpx7CNEvEQrkChny01tSNXExUkO_XvSh-C0e5jZlYaxK4QJIujb-ex-VkwICCYcUCjgJ2xEnFOaKxCnuz2nlEDiORu37QoAUALwXI5YMQtrV_ZrG5P5duOSdxfrvrNdFZrk47vyXfLqtlXzlfgQk3-2CHXdN1W5By_Zmbfr1o2P84J9Pj7Mi-d0-vb0UtxN05Jz3aWIJFBzCU5k6JdWZZpnHjJLVOoFZMCtFLTwqD14oQnUwvEcdVkqu5RK8Qt2c7i7ieGnd21nVqGPzfDSkBASMqWRBooOVBlD20bnzSZWtY1bg2B2vcy-l9n1Msdeg3R9kCrn3J-gh0xaav4L93Fk7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446058912</pqid></control><display><type>article</type><title>Molecular Type Permutation Shift Keying for Molecular Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Yuankun ; Wen, Miaowen ; Chen, Xuan ; Huang, Yu ; Yang, Lie-Liang</creator><creatorcontrib>Tang, Yuankun ; Wen, Miaowen ; Chen, Xuan ; Huang, Yu ; Yang, Lie-Liang</creatorcontrib><description>Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2332-7804</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2020.3014803</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bit error rate ; Complexity ; Computer simulation ; Detectors ; Inter-symbol interference ; Interference ; Keying ; Maximum likelihood detection ; maximum-likelihood ; Modulation ; molecular communication ; Permutations ; Pulse position modulation ; Receivers ; Sensors ; Transmitters ; Viterbi</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2020-11, Vol.6 (2), p.160-164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</citedby><cites>FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</cites><orcidid>0000-0002-2032-9327 ; 0000-0002-9638-7048 ; 0000-0003-4964-6438 ; 0000-0002-9062-6239 ; 0000-0001-5762-1201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9160969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9160969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Yuankun</creatorcontrib><creatorcontrib>Wen, Miaowen</creatorcontrib><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Yang, Lie-Liang</creatorcontrib><title>Molecular Type Permutation Shift Keying for Molecular Communication</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Inter-symbol interference</subject><subject>Interference</subject><subject>Keying</subject><subject>Maximum likelihood detection</subject><subject>maximum-likelihood</subject><subject>Modulation</subject><subject>molecular communication</subject><subject>Permutations</subject><subject>Pulse position modulation</subject><subject>Receivers</subject><subject>Sensors</subject><subject>Transmitters</subject><subject>Viterbi</subject><issn>2372-2061</issn><issn>2332-7804</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQAC0EEhX0B-ASiXPK7tpx7CNEvEQrkChny01tSNXExUkO_XvSh-C0e5jZlYaxK4QJIujb-ex-VkwICCYcUCjgJ2xEnFOaKxCnuz2nlEDiORu37QoAUALwXI5YMQtrV_ZrG5P5duOSdxfrvrNdFZrk47vyXfLqtlXzlfgQk3-2CHXdN1W5By_Zmbfr1o2P84J9Pj7Mi-d0-vb0UtxN05Jz3aWIJFBzCU5k6JdWZZpnHjJLVOoFZMCtFLTwqD14oQnUwvEcdVkqu5RK8Qt2c7i7ieGnd21nVqGPzfDSkBASMqWRBooOVBlD20bnzSZWtY1bg2B2vcy-l9n1Msdeg3R9kCrn3J-gh0xaav4L93Fk7Q</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Tang, Yuankun</creator><creator>Wen, Miaowen</creator><creator>Chen, Xuan</creator><creator>Huang, Yu</creator><creator>Yang, Lie-Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2032-9327</orcidid><orcidid>https://orcid.org/0000-0002-9638-7048</orcidid><orcidid>https://orcid.org/0000-0003-4964-6438</orcidid><orcidid>https://orcid.org/0000-0002-9062-6239</orcidid><orcidid>https://orcid.org/0000-0001-5762-1201</orcidid></search><sort><creationdate>20201101</creationdate><title>Molecular Type Permutation Shift Keying for Molecular Communication</title><author>Tang, Yuankun ; Wen, Miaowen ; Chen, Xuan ; Huang, Yu ; Yang, Lie-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Inter-symbol interference</topic><topic>Interference</topic><topic>Keying</topic><topic>Maximum likelihood detection</topic><topic>maximum-likelihood</topic><topic>Modulation</topic><topic>molecular communication</topic><topic>Permutations</topic><topic>Pulse position modulation</topic><topic>Receivers</topic><topic>Sensors</topic><topic>Transmitters</topic><topic>Viterbi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yuankun</creatorcontrib><creatorcontrib>Wen, Miaowen</creatorcontrib><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Yang, Lie-Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Yuankun</au><au>Wen, Miaowen</au><au>Chen, Xuan</au><au>Huang, Yu</au><au>Yang, Lie-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Type Permutation Shift Keying for Molecular Communication</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>160</spage><epage>164</epage><pages>160-164</pages><issn>2372-2061</issn><eissn>2332-7804</eissn><eissn>2372-2061</eissn><abstract>Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2020.3014803</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2032-9327</orcidid><orcidid>https://orcid.org/0000-0002-9638-7048</orcidid><orcidid>https://orcid.org/0000-0003-4964-6438</orcidid><orcidid>https://orcid.org/0000-0002-9062-6239</orcidid><orcidid>https://orcid.org/0000-0001-5762-1201</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2372-2061
ispartof IEEE transactions on molecular, biological, and multi-scale communications, 2020-11, Vol.6 (2), p.160-164
issn 2372-2061
2332-7804
2372-2061
language eng
recordid cdi_proquest_journals_2446058912
source IEEE Electronic Library (IEL)
subjects Algorithms
Bit error rate
Complexity
Computer simulation
Detectors
Inter-symbol interference
Interference
Keying
Maximum likelihood detection
maximum-likelihood
Modulation
molecular communication
Permutations
Pulse position modulation
Receivers
Sensors
Transmitters
Viterbi
title Molecular Type Permutation Shift Keying for Molecular Communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Type%20Permutation%20Shift%20Keying%20for%20Molecular%20Communication&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Tang,%20Yuankun&rft.date=2020-11-01&rft.volume=6&rft.issue=2&rft.spage=160&rft.epage=164&rft.pages=160-164&rft.issn=2372-2061&rft.eissn=2332-7804&rft_id=info:doi/10.1109/TMBMC.2020.3014803&rft_dat=%3Cproquest_RIE%3E2446058912%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446058912&rft_id=info:pmid/&rft_ieee_id=9160969&rfr_iscdi=true