Molecular Type Permutation Shift Keying for Molecular Communication
Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a n...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on molecular, biological, and multi-scale communications biological, and multi-scale communications, 2020-11, Vol.6 (2), p.160-164 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 2 |
container_start_page | 160 |
container_title | IEEE transactions on molecular, biological, and multi-scale communications |
container_volume | 6 |
creator | Tang, Yuankun Wen, Miaowen Chen, Xuan Huang, Yu Yang, Lie-Liang |
description | Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation. |
doi_str_mv | 10.1109/TMBMC.2020.3014803 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2446058912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9160969</ieee_id><sourcerecordid>2446058912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</originalsourceid><addsrcrecordid>eNpFkMtOwzAQAC0EEhX0B-ASiXPK7tpx7CNEvEQrkChny01tSNXExUkO_XvSh-C0e5jZlYaxK4QJIujb-ex-VkwICCYcUCjgJ2xEnFOaKxCnuz2nlEDiORu37QoAUALwXI5YMQtrV_ZrG5P5duOSdxfrvrNdFZrk47vyXfLqtlXzlfgQk3-2CHXdN1W5By_Zmbfr1o2P84J9Pj7Mi-d0-vb0UtxN05Jz3aWIJFBzCU5k6JdWZZpnHjJLVOoFZMCtFLTwqD14oQnUwvEcdVkqu5RK8Qt2c7i7ieGnd21nVqGPzfDSkBASMqWRBooOVBlD20bnzSZWtY1bg2B2vcy-l9n1Msdeg3R9kCrn3J-gh0xaav4L93Fk7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446058912</pqid></control><display><type>article</type><title>Molecular Type Permutation Shift Keying for Molecular Communication</title><source>IEEE Electronic Library (IEL)</source><creator>Tang, Yuankun ; Wen, Miaowen ; Chen, Xuan ; Huang, Yu ; Yang, Lie-Liang</creator><creatorcontrib>Tang, Yuankun ; Wen, Miaowen ; Chen, Xuan ; Huang, Yu ; Yang, Lie-Liang</creatorcontrib><description>Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.</description><identifier>ISSN: 2372-2061</identifier><identifier>EISSN: 2332-7804</identifier><identifier>EISSN: 2372-2061</identifier><identifier>DOI: 10.1109/TMBMC.2020.3014803</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bit error rate ; Complexity ; Computer simulation ; Detectors ; Inter-symbol interference ; Interference ; Keying ; Maximum likelihood detection ; maximum-likelihood ; Modulation ; molecular communication ; Permutations ; Pulse position modulation ; Receivers ; Sensors ; Transmitters ; Viterbi</subject><ispartof>IEEE transactions on molecular, biological, and multi-scale communications, 2020-11, Vol.6 (2), p.160-164</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</citedby><cites>FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</cites><orcidid>0000-0002-2032-9327 ; 0000-0002-9638-7048 ; 0000-0003-4964-6438 ; 0000-0002-9062-6239 ; 0000-0001-5762-1201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9160969$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9160969$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tang, Yuankun</creatorcontrib><creatorcontrib>Wen, Miaowen</creatorcontrib><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Yang, Lie-Liang</creatorcontrib><title>Molecular Type Permutation Shift Keying for Molecular Communication</title><title>IEEE transactions on molecular, biological, and multi-scale communications</title><addtitle>TMBMC</addtitle><description>Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.</description><subject>Algorithms</subject><subject>Bit error rate</subject><subject>Complexity</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Inter-symbol interference</subject><subject>Interference</subject><subject>Keying</subject><subject>Maximum likelihood detection</subject><subject>maximum-likelihood</subject><subject>Modulation</subject><subject>molecular communication</subject><subject>Permutations</subject><subject>Pulse position modulation</subject><subject>Receivers</subject><subject>Sensors</subject><subject>Transmitters</subject><subject>Viterbi</subject><issn>2372-2061</issn><issn>2332-7804</issn><issn>2372-2061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMtOwzAQAC0EEhX0B-ASiXPK7tpx7CNEvEQrkChny01tSNXExUkO_XvSh-C0e5jZlYaxK4QJIujb-ex-VkwICCYcUCjgJ2xEnFOaKxCnuz2nlEDiORu37QoAUALwXI5YMQtrV_ZrG5P5duOSdxfrvrNdFZrk47vyXfLqtlXzlfgQk3-2CHXdN1W5By_Zmbfr1o2P84J9Pj7Mi-d0-vb0UtxN05Jz3aWIJFBzCU5k6JdWZZpnHjJLVOoFZMCtFLTwqD14oQnUwvEcdVkqu5RK8Qt2c7i7ieGnd21nVqGPzfDSkBASMqWRBooOVBlD20bnzSZWtY1bg2B2vcy-l9n1Msdeg3R9kCrn3J-gh0xaav4L93Fk7Q</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Tang, Yuankun</creator><creator>Wen, Miaowen</creator><creator>Chen, Xuan</creator><creator>Huang, Yu</creator><creator>Yang, Lie-Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2032-9327</orcidid><orcidid>https://orcid.org/0000-0002-9638-7048</orcidid><orcidid>https://orcid.org/0000-0003-4964-6438</orcidid><orcidid>https://orcid.org/0000-0002-9062-6239</orcidid><orcidid>https://orcid.org/0000-0001-5762-1201</orcidid></search><sort><creationdate>20201101</creationdate><title>Molecular Type Permutation Shift Keying for Molecular Communication</title><author>Tang, Yuankun ; Wen, Miaowen ; Chen, Xuan ; Huang, Yu ; Yang, Lie-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-112419360e451fda85935f05a22c9b0503a642bf19f0f49208be3719cc8ad6883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Bit error rate</topic><topic>Complexity</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Inter-symbol interference</topic><topic>Interference</topic><topic>Keying</topic><topic>Maximum likelihood detection</topic><topic>maximum-likelihood</topic><topic>Modulation</topic><topic>molecular communication</topic><topic>Permutations</topic><topic>Pulse position modulation</topic><topic>Receivers</topic><topic>Sensors</topic><topic>Transmitters</topic><topic>Viterbi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yuankun</creatorcontrib><creatorcontrib>Wen, Miaowen</creatorcontrib><creatorcontrib>Chen, Xuan</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Yang, Lie-Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tang, Yuankun</au><au>Wen, Miaowen</au><au>Chen, Xuan</au><au>Huang, Yu</au><au>Yang, Lie-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Type Permutation Shift Keying for Molecular Communication</atitle><jtitle>IEEE transactions on molecular, biological, and multi-scale communications</jtitle><stitle>TMBMC</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>6</volume><issue>2</issue><spage>160</spage><epage>164</epage><pages>160-164</pages><issn>2372-2061</issn><eissn>2332-7804</eissn><eissn>2372-2061</eissn><abstract>Molecular communication (MC) via diffusion is envisioned to be a new paradigm for information exchange in the future nanonetworks. However, the strong inter-symbol interference (ISI) caused by the diffusion channel significantly deteriorates the performance of MC systems. To this end, we propose a novel modulation technique to reduce the ISI effect, termed as molecular type permutation shift keying (MTPSK), which encodes information on the permutations of multiple types of molecules. We design a Genie-aided maximum-likelihood detector and a conventional maximum-likelihood detector, and analyze their performance in terms of bit error rate (BER). Aiming at lower computational complexity, we further design a low-complexity maximum-likelihood detector using a Viterbi-like algorithm with compromised error performance. BER simulation results corroborate that the proposed MTPSK can outperform the prevailing modulation schemes for MC, including molecular shift keying (MoSK), concentration shift keying, depleted MoSK, and pulse position modulation.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMBMC.2020.3014803</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2032-9327</orcidid><orcidid>https://orcid.org/0000-0002-9638-7048</orcidid><orcidid>https://orcid.org/0000-0003-4964-6438</orcidid><orcidid>https://orcid.org/0000-0002-9062-6239</orcidid><orcidid>https://orcid.org/0000-0001-5762-1201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2372-2061 |
ispartof | IEEE transactions on molecular, biological, and multi-scale communications, 2020-11, Vol.6 (2), p.160-164 |
issn | 2372-2061 2332-7804 2372-2061 |
language | eng |
recordid | cdi_proquest_journals_2446058912 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Bit error rate Complexity Computer simulation Detectors Inter-symbol interference Interference Keying Maximum likelihood detection maximum-likelihood Modulation molecular communication Permutations Pulse position modulation Receivers Sensors Transmitters Viterbi |
title | Molecular Type Permutation Shift Keying for Molecular Communication |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Type%20Permutation%20Shift%20Keying%20for%20Molecular%20Communication&rft.jtitle=IEEE%20transactions%20on%20molecular,%20biological,%20and%20multi-scale%20communications&rft.au=Tang,%20Yuankun&rft.date=2020-11-01&rft.volume=6&rft.issue=2&rft.spage=160&rft.epage=164&rft.pages=160-164&rft.issn=2372-2061&rft.eissn=2332-7804&rft_id=info:doi/10.1109/TMBMC.2020.3014803&rft_dat=%3Cproquest_RIE%3E2446058912%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446058912&rft_id=info:pmid/&rft_ieee_id=9160969&rfr_iscdi=true |