Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study
Pd-dotted Ag@Au HNPs can act as the catalytically active site and efficient light absorber simultaneously, which exhibit highly enhanced catalytic activity for formic acid dehydrogenation (1062 h−1 at 0 °C) by utilizing the light energy. The plasmon-induced mechanism was confirmed by single-particle...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2020-11, Vol.277, p.119226, Article 119226 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 119226 |
container_title | Applied catalysis. B, Environmental |
container_volume | 277 |
creator | Tong, Fengxia Lou, Zaizhu Liang, Xizhuang Ma, Fahao Chen, Weijie Wang, Zeyan Liu, Yuanyuan Wang, Peng Cheng, Hefeng Dai, Ying Zheng, Zhaoke Huang, Baibiao |
description | Pd-dotted Ag@Au HNPs can act as the catalytically active site and efficient light absorber simultaneously, which exhibit highly enhanced catalytic activity for formic acid dehydrogenation (1062 h−1 at 0 °C) by utilizing the light energy. The plasmon-induced mechanism was confirmed by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation.
[Display omitted]
•Designed and synthesized Pd-dotted Ag@Au hexagonal nanoplates (HNPs) for the first time.•The Pd-dotted Ag@Au HNPs act as the catalytically active site and light absorber simultaneously.•TOF of HCOOH dehydrogenation can reach to 1062 h−1 even at 0 °C.•PL and FDTD simulation were applied to explored the plasmon-induced mechanism.
Plasmonic nanostructures can be used to drive the commercial catalytic reactions under mild conditions by the surface plasmon resonance (SPR). Herein, heterostructural Pd-dotted Ag@Au hexagonal nanoplates (HNPs) are synthesized via an anisotropic growth process, which exhibit 100 % H2 selectivity, highly enhanced catalytic activity (1062 h−1 at 0 °C) for formic acid dehydrogenation by utilizing the light energy. The plasmon-induced mechanism was studied by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation. The enhanced interaction between the HCOOH molecules and the catalysts resulting from the surface charge heterogeneity and sharp field-gradient near the Pd-dots region, and bond activation via SPR-enhanced local electromagnetic field are the main contributions for the SPR-induced catalysis. The findings provide a promising approach for the design of hybrid plasmonic photocatalysts to drive harsh chemical conversion at mild conditions. |
doi_str_mv | 10.1016/j.apcatb.2020.119226 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2446020143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092633732030641X</els_id><sourcerecordid>2446020143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-bce8cd5752cdebdfd29af63ff9380b4722b69952c6edd1215bbe26864b7687ec3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwDzhY4pziR-okF0SFeEmV6AHOlmNvWlepHWwH0X-PUThzWml2ZrT7IXRNyYISKm73CzVoldoFIyxLtGFMnKAZrSte8Lrmp2hGGiYKzit-ji5i3BNCGGf1DA2bXsWDd4V1ZtRgsIHd0QS_BaeS9Q77Dnc-HKzGSluDs7IxhfEpZe9qe78a8Q6-1dY71WOnnB96lSBi5QyO1m17KAYVktU94JhGc7xEZ53qI1z9zTn6eHp8f3gp1m_Prw-rdaFLQlLRaqi1WVZLpg20pjOsUZ3gXdfwmrRlxVgrmiZvBRhDGV22LTBRi7KtRF2B5nN0M_UOwX-OEJPc-zHkK6NkZSkyKFry7Conlw4-xgCdHII9qHCUlMhftnIvJ7byl62c2ObY3RSD_MGXhSCjtuAyPxtAJ2m8_b_gBxfhhdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446020143</pqid></control><display><type>article</type><title>Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study</title><source>Elsevier ScienceDirect Journals</source><creator>Tong, Fengxia ; Lou, Zaizhu ; Liang, Xizhuang ; Ma, Fahao ; Chen, Weijie ; Wang, Zeyan ; Liu, Yuanyuan ; Wang, Peng ; Cheng, Hefeng ; Dai, Ying ; Zheng, Zhaoke ; Huang, Baibiao</creator><creatorcontrib>Tong, Fengxia ; Lou, Zaizhu ; Liang, Xizhuang ; Ma, Fahao ; Chen, Weijie ; Wang, Zeyan ; Liu, Yuanyuan ; Wang, Peng ; Cheng, Hefeng ; Dai, Ying ; Zheng, Zhaoke ; Huang, Baibiao</creatorcontrib><description>Pd-dotted Ag@Au HNPs can act as the catalytically active site and efficient light absorber simultaneously, which exhibit highly enhanced catalytic activity for formic acid dehydrogenation (1062 h−1 at 0 °C) by utilizing the light energy. The plasmon-induced mechanism was confirmed by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation.
[Display omitted]
•Designed and synthesized Pd-dotted Ag@Au hexagonal nanoplates (HNPs) for the first time.•The Pd-dotted Ag@Au HNPs act as the catalytically active site and light absorber simultaneously.•TOF of HCOOH dehydrogenation can reach to 1062 h−1 even at 0 °C.•PL and FDTD simulation were applied to explored the plasmon-induced mechanism.
Plasmonic nanostructures can be used to drive the commercial catalytic reactions under mild conditions by the surface plasmon resonance (SPR). Herein, heterostructural Pd-dotted Ag@Au hexagonal nanoplates (HNPs) are synthesized via an anisotropic growth process, which exhibit 100 % H2 selectivity, highly enhanced catalytic activity (1062 h−1 at 0 °C) for formic acid dehydrogenation by utilizing the light energy. The plasmon-induced mechanism was studied by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation. The enhanced interaction between the HCOOH molecules and the catalysts resulting from the surface charge heterogeneity and sharp field-gradient near the Pd-dots region, and bond activation via SPR-enhanced local electromagnetic field are the main contributions for the SPR-induced catalysis. The findings provide a promising approach for the design of hybrid plasmonic photocatalysts to drive harsh chemical conversion at mild conditions.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2020.119226</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Catalysis ; Catalysts ; Catalytic activity ; Dehydrogenation ; Electromagnetic fields ; Enhanced electromagnetic field ; Formic acid ; Formic acid dehydrogenation ; Gold ; Hetero-nanostructures ; Heterogeneity ; Palladium ; Photoluminescence ; Photons ; Plasmonics ; Selectivity ; Silver ; Single-particle study ; Surface charge ; Surface plasmon resonance ; Surface plasmon resonance (SPR)</subject><ispartof>Applied catalysis. B, Environmental, 2020-11, Vol.277, p.119226, Article 119226</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Nov 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-bce8cd5752cdebdfd29af63ff9380b4722b69952c6edd1215bbe26864b7687ec3</citedby><cites>FETCH-LOGICAL-c400t-bce8cd5752cdebdfd29af63ff9380b4722b69952c6edd1215bbe26864b7687ec3</cites><orcidid>0000-0003-1104-2583 ; 0000-0002-9453-6943 ; 0000-0002-0723-4956 ; 0000-0001-5683-7326 ; 0000-0003-4250-8104 ; 0000-0002-0416-944X ; 0000-0002-9135-8109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S092633732030641X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tong, Fengxia</creatorcontrib><creatorcontrib>Lou, Zaizhu</creatorcontrib><creatorcontrib>Liang, Xizhuang</creatorcontrib><creatorcontrib>Ma, Fahao</creatorcontrib><creatorcontrib>Chen, Weijie</creatorcontrib><creatorcontrib>Wang, Zeyan</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Cheng, Hefeng</creatorcontrib><creatorcontrib>Dai, Ying</creatorcontrib><creatorcontrib>Zheng, Zhaoke</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><title>Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study</title><title>Applied catalysis. B, Environmental</title><description>Pd-dotted Ag@Au HNPs can act as the catalytically active site and efficient light absorber simultaneously, which exhibit highly enhanced catalytic activity for formic acid dehydrogenation (1062 h−1 at 0 °C) by utilizing the light energy. The plasmon-induced mechanism was confirmed by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation.
[Display omitted]
•Designed and synthesized Pd-dotted Ag@Au hexagonal nanoplates (HNPs) for the first time.•The Pd-dotted Ag@Au HNPs act as the catalytically active site and light absorber simultaneously.•TOF of HCOOH dehydrogenation can reach to 1062 h−1 even at 0 °C.•PL and FDTD simulation were applied to explored the plasmon-induced mechanism.
Plasmonic nanostructures can be used to drive the commercial catalytic reactions under mild conditions by the surface plasmon resonance (SPR). Herein, heterostructural Pd-dotted Ag@Au hexagonal nanoplates (HNPs) are synthesized via an anisotropic growth process, which exhibit 100 % H2 selectivity, highly enhanced catalytic activity (1062 h−1 at 0 °C) for formic acid dehydrogenation by utilizing the light energy. The plasmon-induced mechanism was studied by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation. The enhanced interaction between the HCOOH molecules and the catalysts resulting from the surface charge heterogeneity and sharp field-gradient near the Pd-dots region, and bond activation via SPR-enhanced local electromagnetic field are the main contributions for the SPR-induced catalysis. The findings provide a promising approach for the design of hybrid plasmonic photocatalysts to drive harsh chemical conversion at mild conditions.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Dehydrogenation</subject><subject>Electromagnetic fields</subject><subject>Enhanced electromagnetic field</subject><subject>Formic acid</subject><subject>Formic acid dehydrogenation</subject><subject>Gold</subject><subject>Hetero-nanostructures</subject><subject>Heterogeneity</subject><subject>Palladium</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Selectivity</subject><subject>Silver</subject><subject>Single-particle study</subject><subject>Surface charge</subject><subject>Surface plasmon resonance</subject><subject>Surface plasmon resonance (SPR)</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwDzhY4pziR-okF0SFeEmV6AHOlmNvWlepHWwH0X-PUThzWml2ZrT7IXRNyYISKm73CzVoldoFIyxLtGFMnKAZrSte8Lrmp2hGGiYKzit-ji5i3BNCGGf1DA2bXsWDd4V1ZtRgsIHd0QS_BaeS9Q77Dnc-HKzGSluDs7IxhfEpZe9qe78a8Q6-1dY71WOnnB96lSBi5QyO1m17KAYVktU94JhGc7xEZ53qI1z9zTn6eHp8f3gp1m_Prw-rdaFLQlLRaqi1WVZLpg20pjOsUZ3gXdfwmrRlxVgrmiZvBRhDGV22LTBRi7KtRF2B5nN0M_UOwX-OEJPc-zHkK6NkZSkyKFry7Conlw4-xgCdHII9qHCUlMhftnIvJ7byl62c2ObY3RSD_MGXhSCjtuAyPxtAJ2m8_b_gBxfhhdA</recordid><startdate>20201115</startdate><enddate>20201115</enddate><creator>Tong, Fengxia</creator><creator>Lou, Zaizhu</creator><creator>Liang, Xizhuang</creator><creator>Ma, Fahao</creator><creator>Chen, Weijie</creator><creator>Wang, Zeyan</creator><creator>Liu, Yuanyuan</creator><creator>Wang, Peng</creator><creator>Cheng, Hefeng</creator><creator>Dai, Ying</creator><creator>Zheng, Zhaoke</creator><creator>Huang, Baibiao</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-1104-2583</orcidid><orcidid>https://orcid.org/0000-0002-9453-6943</orcidid><orcidid>https://orcid.org/0000-0002-0723-4956</orcidid><orcidid>https://orcid.org/0000-0001-5683-7326</orcidid><orcidid>https://orcid.org/0000-0003-4250-8104</orcidid><orcidid>https://orcid.org/0000-0002-0416-944X</orcidid><orcidid>https://orcid.org/0000-0002-9135-8109</orcidid></search><sort><creationdate>20201115</creationdate><title>Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study</title><author>Tong, Fengxia ; Lou, Zaizhu ; Liang, Xizhuang ; Ma, Fahao ; Chen, Weijie ; Wang, Zeyan ; Liu, Yuanyuan ; Wang, Peng ; Cheng, Hefeng ; Dai, Ying ; Zheng, Zhaoke ; Huang, Baibiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-bce8cd5752cdebdfd29af63ff9380b4722b69952c6edd1215bbe26864b7687ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Dehydrogenation</topic><topic>Electromagnetic fields</topic><topic>Enhanced electromagnetic field</topic><topic>Formic acid</topic><topic>Formic acid dehydrogenation</topic><topic>Gold</topic><topic>Hetero-nanostructures</topic><topic>Heterogeneity</topic><topic>Palladium</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Selectivity</topic><topic>Silver</topic><topic>Single-particle study</topic><topic>Surface charge</topic><topic>Surface plasmon resonance</topic><topic>Surface plasmon resonance (SPR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Fengxia</creatorcontrib><creatorcontrib>Lou, Zaizhu</creatorcontrib><creatorcontrib>Liang, Xizhuang</creatorcontrib><creatorcontrib>Ma, Fahao</creatorcontrib><creatorcontrib>Chen, Weijie</creatorcontrib><creatorcontrib>Wang, Zeyan</creatorcontrib><creatorcontrib>Liu, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Cheng, Hefeng</creatorcontrib><creatorcontrib>Dai, Ying</creatorcontrib><creatorcontrib>Zheng, Zhaoke</creatorcontrib><creatorcontrib>Huang, Baibiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Fengxia</au><au>Lou, Zaizhu</au><au>Liang, Xizhuang</au><au>Ma, Fahao</au><au>Chen, Weijie</au><au>Wang, Zeyan</au><au>Liu, Yuanyuan</au><au>Wang, Peng</au><au>Cheng, Hefeng</au><au>Dai, Ying</au><au>Zheng, Zhaoke</au><au>Huang, Baibiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2020-11-15</date><risdate>2020</risdate><volume>277</volume><spage>119226</spage><pages>119226-</pages><artnum>119226</artnum><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>Pd-dotted Ag@Au HNPs can act as the catalytically active site and efficient light absorber simultaneously, which exhibit highly enhanced catalytic activity for formic acid dehydrogenation (1062 h−1 at 0 °C) by utilizing the light energy. The plasmon-induced mechanism was confirmed by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation.
[Display omitted]
•Designed and synthesized Pd-dotted Ag@Au hexagonal nanoplates (HNPs) for the first time.•The Pd-dotted Ag@Au HNPs act as the catalytically active site and light absorber simultaneously.•TOF of HCOOH dehydrogenation can reach to 1062 h−1 even at 0 °C.•PL and FDTD simulation were applied to explored the plasmon-induced mechanism.
Plasmonic nanostructures can be used to drive the commercial catalytic reactions under mild conditions by the surface plasmon resonance (SPR). Herein, heterostructural Pd-dotted Ag@Au hexagonal nanoplates (HNPs) are synthesized via an anisotropic growth process, which exhibit 100 % H2 selectivity, highly enhanced catalytic activity (1062 h−1 at 0 °C) for formic acid dehydrogenation by utilizing the light energy. The plasmon-induced mechanism was studied by single-particle photoluminescence (PL) and finite difference time domain (FDTD) simulation. The enhanced interaction between the HCOOH molecules and the catalysts resulting from the surface charge heterogeneity and sharp field-gradient near the Pd-dots region, and bond activation via SPR-enhanced local electromagnetic field are the main contributions for the SPR-induced catalysis. The findings provide a promising approach for the design of hybrid plasmonic photocatalysts to drive harsh chemical conversion at mild conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2020.119226</doi><orcidid>https://orcid.org/0000-0003-1104-2583</orcidid><orcidid>https://orcid.org/0000-0002-9453-6943</orcidid><orcidid>https://orcid.org/0000-0002-0723-4956</orcidid><orcidid>https://orcid.org/0000-0001-5683-7326</orcidid><orcidid>https://orcid.org/0000-0003-4250-8104</orcidid><orcidid>https://orcid.org/0000-0002-0416-944X</orcidid><orcidid>https://orcid.org/0000-0002-9135-8109</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-3373 |
ispartof | Applied catalysis. B, Environmental, 2020-11, Vol.277, p.119226, Article 119226 |
issn | 0926-3373 1873-3883 |
language | eng |
recordid | cdi_proquest_journals_2446020143 |
source | Elsevier ScienceDirect Journals |
subjects | Catalysis Catalysts Catalytic activity Dehydrogenation Electromagnetic fields Enhanced electromagnetic field Formic acid Formic acid dehydrogenation Gold Hetero-nanostructures Heterogeneity Palladium Photoluminescence Photons Plasmonics Selectivity Silver Single-particle study Surface charge Surface plasmon resonance Surface plasmon resonance (SPR) |
title | Plasmon-induced dehydrogenation of formic acid on Pd-dotted Ag@Au hexagonal nanoplates and single-particle study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A27%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasmon-induced%20dehydrogenation%20of%20formic%20acid%20on%20Pd-dotted%20Ag@Au%20hexagonal%20nanoplates%20and%20single-particle%20study&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Tong,%20Fengxia&rft.date=2020-11-15&rft.volume=277&rft.spage=119226&rft.pages=119226-&rft.artnum=119226&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2020.119226&rft_dat=%3Cproquest_cross%3E2446020143%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446020143&rft_id=info:pmid/&rft_els_id=S092633732030641X&rfr_iscdi=true |