Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution

•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behavio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2020-10, Vol.139, p.105786-9, Article 105786
Hauptverfasser: Zhang, Bin, Wang, Rongqiao, Hu, Dianyin, Jiang, Kanghe, Hao, Xinyi, Mao, Jianxing, Jing, Fulei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 105786
container_title International journal of fatigue
container_volume 139
creator Zhang, Bin
Wang, Rongqiao
Hu, Dianyin
Jiang, Kanghe
Hao, Xinyi
Mao, Jianxing
Jing, Fulei
description •The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated. Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.
doi_str_mv 10.1016/j.ijfatigue.2020.105786
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2445965051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112320303170</els_id><sourcerecordid>2445965051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</originalsourceid><addsrcrecordid>eNqFUcuO3CAQRFEiZbLJNwQpZ0942cbH1SgvaaVcds-Iado7ONhMAI80H5T_DNascs2pG7qqqKYI-cjZnjPefZ72fhpt8c8r7gUT223b6-4V2XHdD41UrXhNdowr0XAu5FvyLueJMTawvt2RP4e45OLLWvwF6RwdhuCXZxpHmmyBE5btdMSTvfi4JjrGRBcPvzA0R5vR0VznASmkay420LyeMdkQ4pWui8NEywnTHGeEk628injxSkO0btOGasBX5NbPHlLMJa1Q1oQULzFUY3F5T96MNmT88FLvyNPXL4-H783Dz28_DvcPDUglS-OccoNjyJjrlADt3KiPSnANGgWHgdUy8A64lNhppVmreoChfpfUXAop78inm-45xd8r5mKmuvRSnzRCqXboWtbyiupvqM1sTjiac_KzTVfDmdkyMZP5l4nZMjG3TCrz_sbEusTFYzIZPC6AzieEYlz0_9X4C-3EntA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445965051</pqid></control><display><type>article</type><title>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Bin ; Wang, Rongqiao ; Hu, Dianyin ; Jiang, Kanghe ; Hao, Xinyi ; Mao, Jianxing ; Jing, Fulei</creator><creatorcontrib>Zhang, Bin ; Wang, Rongqiao ; Hu, Dianyin ; Jiang, Kanghe ; Hao, Xinyi ; Mao, Jianxing ; Jing, Fulei</creatorcontrib><description>•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated. Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2020.105786</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer simulation ; Constitutive models ; Continuum damage mechanics ; Crystal plasticity constitutive model ; Evolution ; Hysteresis loops ; Materials fatigue ; Mathematical models ; Microstructure ; Microstructure evolution ; Nickel base alloys ; Nickel-based single crystal superalloy ; Ratcheting ; Ratcheting behaviour ; Single crystals ; Superalloys ; Thermomechanical fatigue</subject><ispartof>International journal of fatigue, 2020-10, Vol.139, p.105786-9, Article 105786</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</citedby><cites>FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</cites><orcidid>0000-0003-2374-2210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112320303170$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wang, Rongqiao</creatorcontrib><creatorcontrib>Hu, Dianyin</creatorcontrib><creatorcontrib>Jiang, Kanghe</creatorcontrib><creatorcontrib>Hao, Xinyi</creatorcontrib><creatorcontrib>Mao, Jianxing</creatorcontrib><creatorcontrib>Jing, Fulei</creatorcontrib><title>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</title><title>International journal of fatigue</title><description>•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated. Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.</description><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Continuum damage mechanics</subject><subject>Crystal plasticity constitutive model</subject><subject>Evolution</subject><subject>Hysteresis loops</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Microstructure evolution</subject><subject>Nickel base alloys</subject><subject>Nickel-based single crystal superalloy</subject><subject>Ratcheting</subject><subject>Ratcheting behaviour</subject><subject>Single crystals</subject><subject>Superalloys</subject><subject>Thermomechanical fatigue</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUcuO3CAQRFEiZbLJNwQpZ0942cbH1SgvaaVcds-Iado7ONhMAI80H5T_DNascs2pG7qqqKYI-cjZnjPefZ72fhpt8c8r7gUT223b6-4V2XHdD41UrXhNdowr0XAu5FvyLueJMTawvt2RP4e45OLLWvwF6RwdhuCXZxpHmmyBE5btdMSTvfi4JjrGRBcPvzA0R5vR0VznASmkay420LyeMdkQ4pWui8NEywnTHGeEk628injxSkO0btOGasBX5NbPHlLMJa1Q1oQULzFUY3F5T96MNmT88FLvyNPXL4-H783Dz28_DvcPDUglS-OccoNjyJjrlADt3KiPSnANGgWHgdUy8A64lNhppVmreoChfpfUXAop78inm-45xd8r5mKmuvRSnzRCqXboWtbyiupvqM1sTjiac_KzTVfDmdkyMZP5l4nZMjG3TCrz_sbEusTFYzIZPC6AzieEYlz0_9X4C-3EntA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Zhang, Bin</creator><creator>Wang, Rongqiao</creator><creator>Hu, Dianyin</creator><creator>Jiang, Kanghe</creator><creator>Hao, Xinyi</creator><creator>Mao, Jianxing</creator><creator>Jing, Fulei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2374-2210</orcidid></search><sort><creationdate>202010</creationdate><title>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</title><author>Zhang, Bin ; Wang, Rongqiao ; Hu, Dianyin ; Jiang, Kanghe ; Hao, Xinyi ; Mao, Jianxing ; Jing, Fulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Continuum damage mechanics</topic><topic>Crystal plasticity constitutive model</topic><topic>Evolution</topic><topic>Hysteresis loops</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Microstructure evolution</topic><topic>Nickel base alloys</topic><topic>Nickel-based single crystal superalloy</topic><topic>Ratcheting</topic><topic>Ratcheting behaviour</topic><topic>Single crystals</topic><topic>Superalloys</topic><topic>Thermomechanical fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wang, Rongqiao</creatorcontrib><creatorcontrib>Hu, Dianyin</creatorcontrib><creatorcontrib>Jiang, Kanghe</creatorcontrib><creatorcontrib>Hao, Xinyi</creatorcontrib><creatorcontrib>Mao, Jianxing</creatorcontrib><creatorcontrib>Jing, Fulei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Wang, Rongqiao</au><au>Hu, Dianyin</au><au>Jiang, Kanghe</au><au>Hao, Xinyi</au><au>Mao, Jianxing</au><au>Jing, Fulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</atitle><jtitle>International journal of fatigue</jtitle><date>2020-10</date><risdate>2020</risdate><volume>139</volume><spage>105786</spage><epage>9</epage><pages>105786-9</pages><artnum>105786</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated. Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2020.105786</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2374-2210</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2020-10, Vol.139, p.105786-9, Article 105786
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2445965051
source Elsevier ScienceDirect Journals
subjects Computer simulation
Constitutive models
Continuum damage mechanics
Crystal plasticity constitutive model
Evolution
Hysteresis loops
Materials fatigue
Mathematical models
Microstructure
Microstructure evolution
Nickel base alloys
Nickel-based single crystal superalloy
Ratcheting
Ratcheting behaviour
Single crystals
Superalloys
Thermomechanical fatigue
title Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20modelling%20of%20ratcheting%20behaviour%20for%20nickel-based%20single%20crystal%20superalloy%20under%20thermomechanical%20fatigue%20loading%20considering%20microstructure%20evolution&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Zhang,%20Bin&rft.date=2020-10&rft.volume=139&rft.spage=105786&rft.epage=9&rft.pages=105786-9&rft.artnum=105786&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2020.105786&rft_dat=%3Cproquest_cross%3E2445965051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445965051&rft_id=info:pmid/&rft_els_id=S0142112320303170&rfr_iscdi=true