Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution
•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behavio...
Gespeichert in:
Veröffentlicht in: | International journal of fatigue 2020-10, Vol.139, p.105786-9, Article 105786 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 105786 |
container_title | International journal of fatigue |
container_volume | 139 |
creator | Zhang, Bin Wang, Rongqiao Hu, Dianyin Jiang, Kanghe Hao, Xinyi Mao, Jianxing Jing, Fulei |
description | •The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated.
Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately. |
doi_str_mv | 10.1016/j.ijfatigue.2020.105786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2445965051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112320303170</els_id><sourcerecordid>2445965051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</originalsourceid><addsrcrecordid>eNqFUcuO3CAQRFEiZbLJNwQpZ0942cbH1SgvaaVcds-Iado7ONhMAI80H5T_DNascs2pG7qqqKYI-cjZnjPefZ72fhpt8c8r7gUT223b6-4V2XHdD41UrXhNdowr0XAu5FvyLueJMTawvt2RP4e45OLLWvwF6RwdhuCXZxpHmmyBE5btdMSTvfi4JjrGRBcPvzA0R5vR0VznASmkay420LyeMdkQ4pWui8NEywnTHGeEk628injxSkO0btOGasBX5NbPHlLMJa1Q1oQULzFUY3F5T96MNmT88FLvyNPXL4-H783Dz28_DvcPDUglS-OccoNjyJjrlADt3KiPSnANGgWHgdUy8A64lNhppVmreoChfpfUXAop78inm-45xd8r5mKmuvRSnzRCqXboWtbyiupvqM1sTjiac_KzTVfDmdkyMZP5l4nZMjG3TCrz_sbEusTFYzIZPC6AzieEYlz0_9X4C-3EntA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445965051</pqid></control><display><type>article</type><title>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Bin ; Wang, Rongqiao ; Hu, Dianyin ; Jiang, Kanghe ; Hao, Xinyi ; Mao, Jianxing ; Jing, Fulei</creator><creatorcontrib>Zhang, Bin ; Wang, Rongqiao ; Hu, Dianyin ; Jiang, Kanghe ; Hao, Xinyi ; Mao, Jianxing ; Jing, Fulei</creatorcontrib><description>•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated.
Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2020.105786</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Computer simulation ; Constitutive models ; Continuum damage mechanics ; Crystal plasticity constitutive model ; Evolution ; Hysteresis loops ; Materials fatigue ; Mathematical models ; Microstructure ; Microstructure evolution ; Nickel base alloys ; Nickel-based single crystal superalloy ; Ratcheting ; Ratcheting behaviour ; Single crystals ; Superalloys ; Thermomechanical fatigue</subject><ispartof>International journal of fatigue, 2020-10, Vol.139, p.105786-9, Article 105786</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</citedby><cites>FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</cites><orcidid>0000-0003-2374-2210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112320303170$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wang, Rongqiao</creatorcontrib><creatorcontrib>Hu, Dianyin</creatorcontrib><creatorcontrib>Jiang, Kanghe</creatorcontrib><creatorcontrib>Hao, Xinyi</creatorcontrib><creatorcontrib>Mao, Jianxing</creatorcontrib><creatorcontrib>Jing, Fulei</creatorcontrib><title>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</title><title>International journal of fatigue</title><description>•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated.
Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.</description><subject>Computer simulation</subject><subject>Constitutive models</subject><subject>Continuum damage mechanics</subject><subject>Crystal plasticity constitutive model</subject><subject>Evolution</subject><subject>Hysteresis loops</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Microstructure evolution</subject><subject>Nickel base alloys</subject><subject>Nickel-based single crystal superalloy</subject><subject>Ratcheting</subject><subject>Ratcheting behaviour</subject><subject>Single crystals</subject><subject>Superalloys</subject><subject>Thermomechanical fatigue</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUcuO3CAQRFEiZbLJNwQpZ0942cbH1SgvaaVcds-Iado7ONhMAI80H5T_DNascs2pG7qqqKYI-cjZnjPefZ72fhpt8c8r7gUT223b6-4V2XHdD41UrXhNdowr0XAu5FvyLueJMTawvt2RP4e45OLLWvwF6RwdhuCXZxpHmmyBE5btdMSTvfi4JjrGRBcPvzA0R5vR0VznASmkay420LyeMdkQ4pWui8NEywnTHGeEk628injxSkO0btOGasBX5NbPHlLMJa1Q1oQULzFUY3F5T96MNmT88FLvyNPXL4-H783Dz28_DvcPDUglS-OccoNjyJjrlADt3KiPSnANGgWHgdUy8A64lNhppVmreoChfpfUXAop78inm-45xd8r5mKmuvRSnzRCqXboWtbyiupvqM1sTjiac_KzTVfDmdkyMZP5l4nZMjG3TCrz_sbEusTFYzIZPC6AzieEYlz0_9X4C-3EntA</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Zhang, Bin</creator><creator>Wang, Rongqiao</creator><creator>Hu, Dianyin</creator><creator>Jiang, Kanghe</creator><creator>Hao, Xinyi</creator><creator>Mao, Jianxing</creator><creator>Jing, Fulei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2374-2210</orcidid></search><sort><creationdate>202010</creationdate><title>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</title><author>Zhang, Bin ; Wang, Rongqiao ; Hu, Dianyin ; Jiang, Kanghe ; Hao, Xinyi ; Mao, Jianxing ; Jing, Fulei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-dd4d9d0e00d642c8ddf8b4218c8e21c908e2916c133e68480547cc95783813233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer simulation</topic><topic>Constitutive models</topic><topic>Continuum damage mechanics</topic><topic>Crystal plasticity constitutive model</topic><topic>Evolution</topic><topic>Hysteresis loops</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Microstructure evolution</topic><topic>Nickel base alloys</topic><topic>Nickel-based single crystal superalloy</topic><topic>Ratcheting</topic><topic>Ratcheting behaviour</topic><topic>Single crystals</topic><topic>Superalloys</topic><topic>Thermomechanical fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bin</creatorcontrib><creatorcontrib>Wang, Rongqiao</creatorcontrib><creatorcontrib>Hu, Dianyin</creatorcontrib><creatorcontrib>Jiang, Kanghe</creatorcontrib><creatorcontrib>Hao, Xinyi</creatorcontrib><creatorcontrib>Mao, Jianxing</creatorcontrib><creatorcontrib>Jing, Fulei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bin</au><au>Wang, Rongqiao</au><au>Hu, Dianyin</au><au>Jiang, Kanghe</au><au>Hao, Xinyi</au><au>Mao, Jianxing</au><au>Jing, Fulei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution</atitle><jtitle>International journal of fatigue</jtitle><date>2020-10</date><risdate>2020</risdate><volume>139</volume><spage>105786</spage><epage>9</epage><pages>105786-9</pages><artnum>105786</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The microstructure evolution of a single crystal superalloy under IP TMF and OP TMF is investigated.•Phenomenological models are developed to describe the microstructure evolution.•A modified crystal plasticity constitutive model considering microstructure evolution is developed.•Ratcheting behaviour during the whole lifetime as well as hysteresis loops and microstructure evolution degree are simulated.
Based on the metallographic observation, the microstructure evolution of nickel-based single crystal superalloy under thermomechanical fatigue (TMF) loading is investigated, and respective phenomenological models of damage and rafting are developed. Considering that the deformation behaviour of material is closely related to their microstructures, new variables involving rafting evolution are incorporated to modify the hardening rule in order to overcome the inaccurate prediction in stable stage of ratcheting behaviour. Furthermore, by combining the continuum damage mechanics, a modified crystal plasticity constitutive model is proposed, and the ratcheting behaviour during the whole TMF lifetime, as well as hysteresis loops, can be simulated accurately.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2020.105786</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2374-2210</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-1123 |
ispartof | International journal of fatigue, 2020-10, Vol.139, p.105786-9, Article 105786 |
issn | 0142-1123 1879-3452 |
language | eng |
recordid | cdi_proquest_journals_2445965051 |
source | Elsevier ScienceDirect Journals |
subjects | Computer simulation Constitutive models Continuum damage mechanics Crystal plasticity constitutive model Evolution Hysteresis loops Materials fatigue Mathematical models Microstructure Microstructure evolution Nickel base alloys Nickel-based single crystal superalloy Ratcheting Ratcheting behaviour Single crystals Superalloys Thermomechanical fatigue |
title | Constitutive modelling of ratcheting behaviour for nickel-based single crystal superalloy under thermomechanical fatigue loading considering microstructure evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constitutive%20modelling%20of%20ratcheting%20behaviour%20for%20nickel-based%20single%20crystal%20superalloy%20under%20thermomechanical%20fatigue%20loading%20considering%20microstructure%20evolution&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Zhang,%20Bin&rft.date=2020-10&rft.volume=139&rft.spage=105786&rft.epage=9&rft.pages=105786-9&rft.artnum=105786&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2020.105786&rft_dat=%3Cproquest_cross%3E2445965051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445965051&rft_id=info:pmid/&rft_els_id=S0142112320303170&rfr_iscdi=true |